
RV’04 Preliminary Version

Guaranteeing Correctness Properties of a
Java Card Applet

Lars-Åke Fredlund

Box 1263, 164 29 Kista,
Swedish Institute of Computer Science, Sweden

e-mail: fred@sics.se

March 5, 2004

Abstract

The paper describes an experiment in which a framework for model checking Java
byte code, combined with the application of runtime monitoring techniques through
code rewriting, was used to guarantee correctness properties of a Java Card applet.

1 Introduction

The Java Card platform [8] is a platform for building multi-application smart
cards. It is based on a subset of Java which omits features such as concur-
rency through threads, garbage collection, and many API functions. How-
ever, to support multiple applications co-existing on the same card (e.g.,
both a purse applet and a loyalty applet), there is a notion of an applet.
Java Card applets are implemented by extending the Java Card API class
javacard.framework.Applet. Briefly an implementation is required to pro-
vide a method install which is called upon installation of an applet, meth-
ods select and deselect for selection/deselection of a particular applet on
a card, and the “main” method process which is called by the card runtime
environment (operating system) upon receiving an event from the card envi-
ronment intended for that applet. An applet can also implement a method
getShareableInterfaceObject for permitting other applets on the same card
to call it.

Unfortunately the Java Card programming platform provides weak sup-
port for separating applets. For instance nothing in the standards prevents
a malicious or badly written applet from allocating all persistent memory on
a card (the little there is), and since the standard does not require garbage
collection this is a very undesirable state-of-affairs. Similar concerns exists
for inter-applet calls, although they are controlled by a rather weak firewall
mechanism. Thus there are significant dangers with permitting new applets

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Fredlund

onto a functioning smart card, and as a result one of the chief innovations
of Java Card, i.e., multiple applications co-existing on the same card, is in
practise not used much at all.

To improve upon this situation the formal design techniques group of SICS
have been using fully automatic and low-cost (in terms of execution speed and
memory usage) verification methods that could, potentially, be used by an on
(or off) card runtime system to determine at load time whether a new applet
should be permitted onto a card with pre-existing applets or not. In a first
experiment, reported in [3], we analysed inter-method calls of multi-applet
Java Card smart cards using model checking of Java byte code. In this paper
we extend the treatment to memory allocation concerns. In case the safety
of an applet cannot be proved using model checking, we as a complementary
technique instrument a compiled applet with a runtime monitor to guarantee
that it adheres to a safe memory allocation policy.

To provide a semantics foundation for the analysis of Java Card applets we
use the abstract notion of a program graph, capturing the control flow of pro-
grams with procedures/methods, and which can be efficiently computed. The
behaviour of such program graphs is defined through the notion of pushdown
systems, which provide a natural execution model for programs with methods
(and possibly recursion), and for which completely automatic model checkers
for LTL exist, e.g., Moped [7]. The details of the translation are elaborated
in section 3.1, and sections 3.2, 3.3 and 3.4 describes the logic and our use of
the Moped model checking tool in further detail.

The example considered in the paper is a real applet submitted by Schlum-
berger. The applet is monolithic, and does not communicate with other ap-
plets. In section 4 we formalise and attempt to verify the property that no
memory is allocated by an applet (after a personalization process) using model
checking. As the satisfaction of this property is shown to depend critically on
properties of data, which requires reasoning using less coarse abstractions than
the ones implemented in the call graph extraction tool, we consider in sec-
tion 5 the complementary use of runtime monitoring techniques to guarantee
the property.

2 Constructing Method Call Graphs

We use an external static analysis tool, Soot [12], adapted to Java Card 1 , to
generate call graphs which abstract from everything (such as data variables,
and parameters to method calls) but the presence and order of method calls
inside method bodies. The analysis tool performs a safe over-approximation
(with regards to preservation of LTL safety properties) in the sense that call
edges may be present in the result call graph even if the corresponding calls
cannot be invoked at runtime, but the opposite does not hold. For instance,

1 to handle, for instance, the absence of the java.lang.Class class

200



Fredlund

when the static analysis cannot determine which class method is invoked in a
method call, typically due to subtyping, then a call edge is generated to a tar-
get method in every possible class, thus increasing the nondeterminism in the
generated call graph. The static analysis tool generates graphs with informa-
tion about exceptional behaviours. In this work exceptional edges, and nodes,
are translated into non-deterministic constructs thus effectively increasing the
non-determinism in program behaviour in a conservative fashion.

The call graph generation is also conservative with respect to the Java
Card firewall mechanism, which is not considered during static analysis. That
is, a method call that at runtime will fail the security checks of the Java Card
runtime environment will nevertheless invariably be included in the method
call graphs. To refine the analysis, and to permit analysis of Java Card API
usage, the API classes of SUN’s Java Card Development Kit (version 2.1.2)
are optionally included in the method call generation.

The result of the generation process is a set of method call graphs, repre-
senting the methods that may be called after the runtime environment invokes
one of the (public) callable applet methods: install which is called during
installation of an applet, methods select and deselect for applet selec-
tion/deselection, getShareableInterfaceObject for permitting inter-applet
calls, and the main processing method process which is invoked once for every
(user) interaction with a Java Card applet.

As we in this case study want to observe the allocation of memory by an
applet the standard method call graph generation process has been augmented
to additional include information about invocations of the new and newarray

Java virtual machine (byte code) instructions. An instance of the new instruc-
tion will be represented in a method call graph as a call to the new (synthetic)
method Events.newInst and a newarray instruction as a call to the method
Events.newarrayInst.

2.0.1 Method Call Graphs

The methods M are partitioned into classes C, which are themselves parti-
tioned into packages P . We assume the usual Java naming conventions with
fully qualified names, i.e., a class has a name Package.identifier and a method
has a name Class .identifier .

Definition 2.1 [Method Graph, adapted from [9]] A method graph is a tuple

m
∆
= (Vm,→m, λm, µm)

such that:

(i) Vm are the program points of m,

(ii) →m⊆ Vm × Vm are the transfer edges of m, and

(iii) λm : Vm → T designates to each program point of m a program point type

from the set T
∆
= {entry, seq, call, return}.

201



Fredlund

(iv) µm : Vm → ℘(M) designates to each program point of type call of m a
non-empty set of methods.

We assume the program point sets Vm to be pairwise disjoint. The program

points of the program is the set V
∆
=

⋃
m∈M Vm.

The program point type indicates whether (entry) a node is the entry
point of a method, (seq) a node in which no method call or return takes
place, (call) a node from which a method call takes place, or (return) a
node in which the execution of the method finishes and control flow returns
to the calling method.

The method call graphs extracted from a Java Card applet using the mod-
ified Soot tool has the following invariant properties: (i) there is exactly one
entry program point per method; (ii) there is exactly one return program point
per method; (iii) nondeterminism in a call node is due to lack of precision in
resolving the target of a method call (due to subtyping), never due to the
occurrence of two distinct calls (sequential method calls are always separated
by a transfer edge).

For convenience, we introduce the predicates

v : t
∆
= λm(v) = t for t ∈ T

v : locm
∆
= v ∈ Vm

v : entry m
∆
= v : entry ∧ v : locm

v : return m
∆
= v : return ∧ v : locm

v : class c
∆
= ∃m. v : locm ∧ m ∈ c

v : package p
∆
= ∃c. v : class c ∧ c ∈ p

For the sake of this case study we further define a predicate v : api,
which holds if the program point v occurs in a method in a Java Card
API package (one of java.lang, javacard.framework, visa.openplatform,
javacard.security or javacardx.crypto).

3 Model Checking Method Call Graphs

3.1 Pushdown Systems

Pushdown systems provide a natural execution model for programs with re-
cursion. They form a well-studied class of infinite-state systems for which
many important problems like equivalence checking and model checking are
decidable [2].

Definition 3.1 [PDS, from [6]] A pushdown system (PDS) is a tuple

P ∆
= (P,Γ,∆)

202



Fredlund

where:

(i) P is a finite set of control locations;

(ii) Γ is a finite set of stack symbols;

(iii) ∆ ⊆ (P × Γ)× (P × Γ?) is a finite set of rewrite rules 〈p, γ〉 −→ 〈q, σ〉.

The set P × Γ? are the configurations of P . If 〈p, γ〉 −→ 〈q, σ〉 is a
rewrite rule of P , then for each ω ∈ Γ? the configuration 〈q, σ · ω〉 is an
immediate successor of the configuration 〈p, γ · ω〉. A run of P is a sequence
ρ = 〈p0, σ0〉 〈p1, σ1〉 〈p2, σ2〉 · · · , such that for all i, 〈pi+1, σi+1〉 is an immediate
successor of 〈pi, σi〉.

We now define how a set of methods M induces a PDS.

Definition 3.2 [Induced PDS, formalising [7]] A set of methods M induces
a PDS

P ∆
= (P,Γ,∆)

as follows:

(i) P consists of the single control location p;

(ii) Γ is the set V of program points;

(iii) ∆ is the set
⋃

m∈M

⋃
v∈Vm

Prod(v), where Prod(v) is a set of rewrite rules:
{〈p, v〉 −→ 〈p, ε〉} if v : return

{〈p, v〉 −→ 〈p, v′〉 | v →m v′} if v : entry or v : seq⋃
m′∈µm(v)

{
〈p, v〉 −→ 〈p, v′ · v′′〉 | v′ : entry m′, v →m v′′

}
if v : call

The rewrite rules of the pushdown system can be interpreted as simply ma-
nipulating the calling stack of the program from which the PDS was obtained.

Given a configuration c ≡ 〈p, v · σ〉 let point (c)
∆
= v.

3.2 Specification Language

Our specification language is linear temporal logic (LTL), with program point
predicates p as atomic propositions but omitting the type predicate v : t.
The choice of linear temporal logic as the specification language, instead of
for instance the modal µ-calculus for which the model checking problem for
our encoding into pushdown systems is also efficiently decidable, was solely
motivated by the existence of the efficient model checker Moped [7] for LTL.

The operators of the logic are the standard ones. If φ and ψ are formulas
then so are ¬φ, φ ∧ ψ, φ ∨ ψ, φ ⇒ ψ, X φ and φ U ψ. The meaning of
formulas is defined with respect to runs of infinite length r ≡ c0c1c2 . . .. We
let ri denote the suffix of r starting in configuration ci. Then satisfaction
r |= φ of a formula φ by a run r is defined as:

203



Fredlund

r |= p iff point (c0) : p

r |= ¬φ iff not r |= φ

r |= φ ∧ ψ iff r |= φ and r |= ψ

r |= φ ∨ ψ iff r |= φ or r |= ψ

r |= X φ iff r1 |= φ

r |= φ U ψ iff there is an i ≥ 0 such that ri |= ψ and rj |= φ for all 0 ≤ j < i

Henceforth let false abbreviate p ∧ ¬p for some atomic predicate p, true
abbreviate ¬false, φ ⇒ ψ abbreviate ¬φ ∨ ψ, and next φ abbreviate X φ and

φ until ψ abbreviate φ U ψ. Further define eventually φ
∆
= true U φ

and always φ
∆
= ¬ (eventually ¬φ). The weak until operator φ weakuntil ψ

abbreviates φ until ψ ∨ always φ. Finally let never φ
∆
= always ¬φ.

Given a PDS pds let the notation m ` φ express the judgment that all
runs starting in the entry program point of the method m satisfy φ. More
formally:

Definition 3.3 [Model Checking a Method Call] Given a PDS pds with the
single control location p and a method m, the judgment m ` φ is valid iff for
every run r of the PDS pds ′ from the initial configuration 〈p,m init〉, r |= φ
holds, where v is the entry program point of method m (i.e. v : entry m), pds ′

is the PDS pds extended with the fresh stack symbols m init and m loop,
and the two rewrite rules 〈p,m init〉 −→ 〈p, v ·m loop〉 and 〈p,m loop〉 −→
〈p,m loop〉 to achieve infinite runs.

The definition of a judgment m ` φ is motivated by the Moped tool which
implements an algorithm for checking an initial configuration with a stack of
size at most one against an LTL formula.

3.3 Specification Patterns

As in the Bandera project [4] specification patterns are used to facilitate formu-
lating correctness properties. These specification patterns concern temporal
properties of method invocations, and are either temporal patterns or judg-
ment patterns concerning the invocation of a particular method. Below a set
of patterns that we have defined, and which are commonly used, are given.

To express that within the call of a method m the property φ holds the
judgment pattern

Within m φ
∆
= m ` φ

is used. The property that a call to m1 never triggers method m2 is:

m1 never triggers m2 ≡ Within m1 (never locm2)

204



Fredlund

Next define the temporal patterns (formulas) (i) m2 after m1, i.e., m2 can only
be called after a call to m1; (ii) m2 through m1, i.e., m2 can only be called
from m1; (iii) m2 from m1, i.e., m2 can only be called directly from m1; and
(iv) m1 excludes m1, i.e., when m1 is called this excludes the possibility that
m2 will later be called:

m2 after m1
∆
= (never locm2) weakuntil locm1

m1 excludes m2
∆
= (eventually locm1) ⇒ never locm2

m2 from m1
∆
= always (¬ (locm1 ∨ locm2) ⇒ next ¬locm2) ∧ ¬locm2

m2 through m1
∆
=

¬locm2 weakuntil locm1

∧

 always return m1 ⇒

next (¬locm2 weakuntil locm1)


The intuitive idea of the formulation of m2 from m1 is to express that the
current program point can be in method m2 only because of a direct call from
m1, or because it was already in m2, and initially the program point is not
in m2. The above patterns can be combined with the Within pattern. For
example,

Within m1 (m3 after m2)

expresses that during a call to m1 the method m3 will be called only after
calling m2.

An alternative technique for expressing correctness properties of behaviours
of programs of stack-based languages is to use stack inspection techniques [9].
Essentially these techniques express constraints on the set of all possible run-
time stacks. Note however that for instance the after property above cannot
directly be coded as a stack inspection property since the calls to m1 and m2

need not be concurrent.

3.4 A Tool for Model Checking Pushdown Systems

The Moped tool [7] can check a pushdown system, from an initial configura-
tion, against an LTL formula where the atomic predicates consists of a set of
atomic symbols that checks the identity of the top stack symbol or the con-
trol location (i.e., simply checks name equality). In case the LTL formula is
falsified a reduced pushdown system constructed from the original one, that
also falsifies the LTL formula, is presented as diagnostic information.

To represent the non-identity atomic predicates (e.g., package, entry, . . .)
as “Moped LTL formulas” a number of options are possible. Consider for
instance the package atomic predicate. A direct representation of the predicate
in Moped LTL would consist of a disjunction over all the program points in
any class in the package.

205



Fredlund

An alternative representation strategy is to enrich the translation from a
call graph to a pushdown system. Since Moped provides boolean variables
we could represent the current package identity encoded in a set of boolean
variables in the pushdown system. These variables would then be updated for
every rewrite rule that crosses package boundaries. Finally the representation
of the package predicate itself would consist of a simple boolean condition.

We have instead opted to extend the Moped tool with atomic predicates
that can match a control location, or the top stack symbol, against a reg-
ular expression. These predicates check the syntactic shape of the symbol
being tested. Consider the naming of program points of a method m by the
call graph construction. Its entry program point will be named m entry , its
(unique) return program point will be named m exit , and all other program
points in m are of the form m n where n is a natural number.

With these conventions in place the atomic predicates can be represented
in “regular expression Moped” as indicated below:

locm
∆
= m_.*

entry m
∆
= m_entry

return m
∆
= m_exit

class c
∆
= c\..*_.*

package p
∆
= p\..*\..*_.*

In the encoding it is assumed that the dot symbol ‘.’ has to be quoted using a
backslash character inside a regular expression to represent itself, rather than
representing any character. Wildcards can be used in a regular expression to
achieve a limited form of quantification over program points.

4 The SLB example: Code and Correctness Properties

This paper studies an applet developed by SchlumbergerSema, henceforth re-
ferred to as the SLB applet study. In total the source code of the applet
comprises around 765 lines of Java Card source code. As an example bench-
mark figure the generation of the calling graph for the process methods of the
applet, and translation of the callgraph to a push down system, takes roughly
3 seconds 2 . The resulting push down system has approximately 540 rules.

As an example we first encode the property of absence of communication
with other applets. A sufficient condition (but not strictly necessary) for es-
tablishing that the SLB applet does not attempt to communicate with another
applet 3 is to check whether it ever calls a method in another package. The

2 on a laptop with an Intel Pentium III Mobile CPU at 1200Mhz
3 except ones that are defined in the same Java package, as the Java Card standard com-
munication firewall anyway only regulates inter-package method calls

206



Fredlund

property that verifies that it does not can be stated as (note that the applet
package is named com.schlumbergersema.slb and that API calls and calls
to the synthetic methods in Events are permitted):

Within com.schlumbergersema.slb.Main.process

always (package com.schlumbergersema.slb) ∨ api ∨ package Events

Similarly a sufficient condition for the absence of incoming calls to the applet
is that the applet does not define a getShareableInterfaceObject method,
which is checkable when the API is abstracted away.

In an accompanying document [10] a set of desirable security properties
for the SLB applet were given, including information flow control properties,
memory allocation control properties, error prediction properties, and consis-
tency control properties. In this paper we mainly focus on the problem of
checking and guaranteeing that proper memory allocation security procedures
are followed. The document specifies, that,

The SLB applet does not allocate memory after the personalization process.

Unfortunately the document does not specify what constitutes a completed
personalization process. In the first approximation of the correctness property
we consider personalization to be completed upon the first call of the process
method (this method can only be called after the completion of a call to the
install method). The corresponding property is:

Within com.schlumbergersema.slb.Main.process

never (loc Events.newInst) ∨ (loc Events.newArrayInst)

That is, during the call of the process method no allocation of memory will
be attempted using the byte code instructions new or newarray. The Moped
tool can quickly 4 check such a formula; for the SLB applet the result is that
the formula does not hold, and a counter example is generated automatically
(a reduced system generated from the original one that also fails to satisfy
the property). As an example we include the printout in figure 1 which shows
the evolution of configurations (a pair of a control location p and a stack of
symbols) during a call to the process method. The names of methods have
been mangled, but still the figure does illustrate the problem: a call to the
process method can, via a call to the processAppendRecord method, allo-
cate memory using the newarray byte code instruction (note the occurrence
of the entry point of Events.newarrayInst on top of the “stack” in the fi-
nal configuration). The corresponding property for allocation using the new

instruction does hold, i.e., no memory is allocated for non-array objects after
calling the process method.

4 in less than a second, on the same hardware as was used to generate the call graph

207



Fredlund

p <com_schlumbergersema_slb_Main_process_init>
p <com_schlumbergersema_slb_Main_process_entry m_loop>
p <com_schlumbergersema_slb_Main_process_77 m_loop>
p <com_schlumbergersema_slb_Main_process_78 m_loop>
p <javacard_framework_APDU_getBuffer_entry

com_schlumbergersema_slb_Main_process_81 m_loop>
p <com_schlumbergersema_slb_Main_process_81 m_loop>
...
p <com_schlumbergersema_slb_Main_processAppendRecord_292

com_schlumbergersema_slb_Main_process_ret m_loop>
p <com_schlumbergersema_slb_Main_processAppendRecord_293

com_schlumbergersema_slb_Main_process_ret m_loop>
p <com_schlumbergersema_slb_Main_processAppendRecord_294

com_schlumbergersema_slb_Main_process_ret m_loop>
p <Events_newArrayInst_entry

com_schlumbergersema_slb_Main_processAppendRecord_295
com_schlumbergersema_slb_Main_process_ret m_loop>

...

Fig. 1. An excerpt from the counter example

Inspecting the byte code of the applet shows that the open platform 5 per-
sonalization scheme seems to be used, i.e., the code contains a call to the
method visa.openplatform.OPSystem.setCardContentState. To check
whether allocation occur only before personalization the first property is re-
fined into the property:

Within com.schlumbergersema.slb.Main.process

always

 loc visa.openplatform.OPSystem.setCardContentState⇒

never loc Events.newArrayInst


That is, during any call to process new arrays are never allocated after

the personalization method has been called. The Moped tool confirms that
this property holds of the SLB applet. Unfortunately it isn’t quite strong
enough to guarantee absence of allocation after personalization (since a later
call to process is still allowed to allocate an array).

The property below expresses a stronger property that during any call
to process, any array allocation must always finish with a call to the
setCardContentState method:

Within com.schlumbergersema.slb.Main.process

always

 loc Events.newArrayInst⇒

eventually loc visa.openplatform.OPSystem.setCardContentState


5 http://www.globalplatform.com

208



Fredlund

Trying to verify this property with Moped unfortunately fails and a counterex-
ample is generated.

To summarise the state-of-affairs: during any call to process there is a
possibility that personalization takes place, and if it does, no more memory is
allocated. However, there exists also the possibility that an array is allocated
during an invocation of the process method but that afterwards no personal-
ization takes place. This need not necessarily indicate a bug; it could be that
the applet keeps a state between invocations of the process method by the
runtime environment which records whether personalization has taken place,
i.e., the allocation property is data dependent and these data dependencies
have been abstracted away during call graph generation thus generating false
positives.

Clearly the call graph generation process can be refined, using static analy-
sis techniques, to take data dependencies into account. However, determining
which abstractions are required to conclusively prove, or disprove, the property
is in general not a task which we can expect to be able to solve automatically.
In the next section we instead explore an alternative technique to guarantee
the memory allocation property.

5 Monitoring Memory Allocation

Clearly the memory allocation property is a safety property, and we can thus
guarantee the desired memory allocation property by implementing a runtime
monitor [11] to control the execution of the applet.

The monitor has an obligation to preserve the (monitored) safety property
and to halt the execution of the (monitored) applet whenever it detects that
the applet is about to violate its safety property. For checking the memory
allocation control property a very simple two state runtime monitor suffices
that keeps track of whether personalization has occurred, and if it has not,
permits memory allocations, and if it has, disallows them. The applet com-
bined with such a runtime monitor may not meet all requirements regarding
behaviour (e.g., progress properties), but it will not violate its safety property.

5.1 Implementation Details

A monitor can be implemented in different ways: in a runtime system if it
is accessible, or as a separate thread/process, or the code of the runtime
monitor can be directly inlined with the monitored application. For the Java
Card platform the choice of implementation method is obvious given the lack
of threads, and the lack of access to API libraries. The applet code has to be
physically combined with the runtime monitor code, using the technique of
code instrumentation. Any operations in the applet code that could violate
the monitor has to be preceded with monitor code that checks whether the
operation in question is safe. Thus for the case study we monitor calls to the

209



Fredlund

API method visa.openplatform.OPSystem.setCardContentState and we
monitor memory allocation using the byte code instructions new and newarray

from applet code (in this study we do not consider indirect memory allocations
by Java Card API methods). As Java byte code is well-structured, and a byte
code verifier guarantees that calling conventions and such are adhered to, it
turns out that Java is very well suited for implementing runtime monitoring
through code instrumentation; see for example Erlingsson and Schneider [5]
for a discussion.

We have implemented a facility for experimenting with the automatic in-
strumentation of Java Card programs using the Soot [12] tool; in fact the
same tool that was used for call graph extraction. A significant advantage of
using the Soot tool is that it provides a well-defined high-level abstract view of
Java (Card) byte code methods. A method is guaranteed to have single entry
and return program points, the runtime stack is abstracted away in favour
of assignments to local variables, to be composed of a select few instructions
(rather than arbitrary Java byte code instructions) partly due to the absence
of stack instructions, and for implementing program transformations there is
ample support for inserting new byte code instructions in the middle of a
method body.

To continue the SLB case study we implemented a generic transformer in
Soot that when it recognizes a new instruction (or newarray), or a call to the
personalization method, inserts an appropriate call to the runtime monitor.
The code of the transformer (for the new instructions) is:

...

MonitorClass = Scene.v().loadClassAndSupport("Monitor");

personalize = MonitorClass.getMethod("void personalize()");

allocating = MonitorClass.getMethod("void allocating()");

...

protected void internalTransform

(Body body, String phaseName, Map options)

{

Chain units = body.getUnits();

...

Iterator stmtIt = units.snapshotIterator();

while(stmtIt.hasNext()) {

Stmt s = (Stmt) stmtIt.next();

...

else if (containsNewExpr(s)) {

// We found a new expression, instrument it!

units.insertBefore

(Jimple.v().newStaticInvokeExpr(allocating), s);

}

}

}

210



Fredlund

...

boolean containsNewExpr(Stmt s) {

if (s instanceof AssignStmt &&

((AssignStmt) s).getRightOp() instanceof NewExpr) return true;

return false;

}

The monitor routine has a state variable, personalized, which determines
whether allocation is permitted:

public class Monitor {

private static boolean personalized = false;

public static void personalize() {

personalized = true;

}

public static void allocating() {

if (personalized)

ISOException.throwIt(ISO7816.SW_UNKNOWN);

}

}

Next Java byte code was generated from the intermediate representation
by Soot, generating ultimately a new applet that was combined with the
monitor code. In the process of generating byte code from the intermediate
representation a number of problems peculiar to the Java Card platform had
to be resolved. In our experiment Soot was used as a Java compiler, and to
be able to run the resulting (instrumented) Java Card applet (in, for instance,
Sun’s Java Card simulation tool) it is necessary to “convert it” 6 using SUN’s
Java Card Development Kit. Unfortunately the converter tool is targeted
towards converting code produced by the Sun Java compiler. To produce
byte code output acceptable to the converter tool we had to alter the Soot
compiler to (i) generate code that Sun’s converter would recognise as obeying
the restrictions regarding the use of short integers, and (ii) to generate object
initialization code that follows the rather harsh restrictions put forward in
Java Card documentation.

Once these, and a number of minor additional problems with the compila-
tion to Java Card were settled, we were able to simulate the instrumented SLB
applet in Sun’s Java Card simulator. Guided by an inspection of the source
code of the applet we were able to design a sequence of APDU messages
(events received from the card environment resulting in calls to the process

method) which, had the safety preserving monitor not being inlined, would
have resulted in the applet violating its memory allocation policy. That is,
it would have attempted to allocate fresh memory even after personalization.

6 e.g., to check that only short integer arithmetic is used

211



Fredlund

The applet essentially allocates an array of records lazily, and signals person-
alization already when the first record has been allocated, even though later
allocations can occur and it thus violates its own stated policy. In retrospect
we believe it would have been exceedingly difficult to discover such a problem
using solely a combination of model checking and automatic data abstraction.

The impact in terms of (instrumented) applet code size, of the in-memory
size of the applet, and of execution slow-down is negligible. The only code
additions, except the inclusion of the small monitor class itself, is the calls to
the monitor class signalling personalization and memory allocation. However
the number of locations where such calls occur are expected to be few.

5.2 A Second Memory Allocation Property

As a followup to the first experiment with runtime monitoring we decided to
monitor also the weaker property of bounded memory allocation, i.e., that
there is a bound on the amount of memory the applet allocates. To permit
the monitoring of this property the memory control transformer was easily
extended to also count the amount of memory allocated (for a new or newarray
instruction) by analysing the class hierarchies in Soot. That is, the fields of
an object to be allocated are computed (including fields of superclasses), and
the size of representing each field in the runtime system is estimated (the size
is not predetermined by the Java standard). Thus a new instruction in the
code was prefixed with a call to a monitor method, with as parameter the size
of the allocation request (the size of the object, or the size of the array), and
which is responsible for halting the execution of the applet if a predetermined
allocation bound will be exceeded by the execution of the new instruction.

Clearly a property such as the bounded allocation property is a good ex-
ample of a class of applet properties that can either be implemented in a card
runtime system by a card manufacturer, or, as we show in this example, it
can equally well be ensured by combining any applet code to be loaded onto
a card with a well-defined runtime monitor guaranteeing the property. Other
examples of such monitorable properties interesting for Java Card are, for
instance, specific applet-to-applet communication disciplines that are stricter
than the firewall mechanism provided by the Java Card standard.

6 Conclusions and Future Work

The paper has studied how to guarantee important security properties for
a typical Java Card application using light-weight formal methods, e.g., us-
ing model checking and by implementing runtime monitors to forcibly ensure
safety properties. The model checking work uses a framework for automatic
model checking of temporal constraints on method calls in Java Card applets.
The framework has been realised by combining a class–based static analysis
tool with an automatic model checker for pushdown system and linear tem-

212



Fredlund

poral logic. The runtime monitor experiment is promising but needs to be
properly formalised. We would like to (i) develop a generic code rewriting
function that given a safety property in temporal logic inserts probes into the
code to keep the monitor state updated, and (ii) to use an available opera-
tional semantics for Java Card such as e.g. [1] to develop a proof that the code
rewriting function respects the operational semantics of Java Card, and the
semantics of the temporal logic. We would also like to study the feasibility of
using code rewriting of applets as a systematic technique to implement card
specific policies for card issuers.

Further information, including prototype implementations, regarding
the work presented in this paper can be found in the web page
http://www.sics.se/fdt/projects/vericode/jcave.html.

7 Acknowledgment

The research has been conducted within the VerifiCard project with financial
support from the IST programme of the European Union. I would like to
thank Gennady Chugunov and Dilian Gurov for their their contributions to
this work, with regards to tool support and theory development for the model
checking part, and thank Pablo Giambiagi for interesting discussions on the
potential of runtime monitoring techniques.

References

[1] Barthe, G., G. Dufay, L. Jakubiec, S. M. de Sousa and B. Serpette, A
Formal Executable Semantics of the JavaCard Platform, in: D. Sands, editor,
Proceedings of ESOP’01, LNCS 2028 (2001), pp. 302–319.
URL ftp://ftp-sop.inria.fr/lemme/Gilles.Barthe/esop01.ps.gz

[2] Burkart, O., D. Caucal, F. Moller and B. Steffen, Verification on infinite
structures, in: J. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process
Algebra, North Holland, 2000 pp. 545–623.

[3] Chugunov, G., L. Fredlund and D. Gurov, Model checking of multi-applet
JavaCard applications, in: Fifth Smart Card Research and Advanced Application
Conf. (CARDIS’2002) (2002), pp. 87–96.

[4] Corbett, J., M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu and H. Zheng,
Bandera: extracting finite-state models from Java source code, in: International
Conference on Software Engineering, 2000, pp. 439–448.

[5] Erlingsson, U. and F. B. Schneider, SASI enforcement of security policies: A
retrospective, in: Proceedings of the New Security Paradigms Workshop, 1999.

[6] Esparza, J., D. Hansel, P. Rossmanith and S. Schwoon, Efficient algorithms
for model checking pushdown systems, in: Proc. CAV’00, Lecture Notes in
Computer Science 1855 (2000), pp. 232–247.

213

ftp://ftp-sop.inria.fr/lemme/Gilles.Barthe/esop01.ps.gz


Fredlund

[7] Esparza, J. and S. Schwoon, A BDD-based model checker for recursive programs,
Lecture Notes in Computer Science 2102 (2001), pp. 324–336.

[8] JavaCard 2.1.1 Documentation, Technical report, Sun Microsystems (2000),
http://java.sun.com/products/javacard/specs.html#211.

[9] Jensen, T., D. L. Metayer and T. Thorn, Verification of control flow based
security properties, in: IEEE Symposium on Security and Privacy, 1999.

[10] SchlumbergerSema, Java Card applet security properties, internal deliverable,
VerifiCard Project, task 6.3.

[11] Schneider, F. B., Enforceable security policies, Technical Report TR99-1759,
Cornell Univ (1999).

[12] Vallée-Rai, R., L. Hendren, V. Sundaresan, P. Lam, E. Gagnon and P. Co, Soot
- a Java optimization framework, in: Proceedings of CASCON 1999, 1999.

214


	Introduction
	Constructing Method Call Graphs
	Model Checking Method Call Graphs
	Pushdown Systems
	Specification Language
	Specification Patterns
	A Tool for Model Checking Pushdown Systems

	The SLB example: Code and Correctness Properties
	Monitoring Memory Allocation
	Implementation Details
	A Second Memory Allocation Property

	Conclusions and Future Work
	Acknowledgment
	References

