
RV’04 Preliminary Version

Simulation of Simultaneous Events in Regular
Expressions for Run-Time Verification

Usa Sammapun Arvind Easwaran Insup Lee Oleg Sokolsky 1,2

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, USA

Abstract

When specifying system requirements, we want a language that can express the
requirements in the simplest and most intuitive form. Although the MaC system
provides an expressive language, called MEDL, it is generally awkward to express
certain features like temporal ordering of complex events, timing constraints, and
frequencies of events which are inherent in safety properties. MEDL-RE extends the
MEDL language to include regular expressions to easily specify timing dependencies
and timing constraints. Due to simultaneous events generated by the MaC system,
monitoring regular expressions by simulating DFAs would result in a potential prob-
lem. The DFA simulations would involve concurrent multi-path simulations and
result in exponential running time. To handle simultaneous events inexpensively,
we generate a dependency graph to identify possible simultaneous events. Further,
we augment the original DFAs with alternative transitions, which will substitute
for multi-path simulations.

1 Introduction

The monitoring, checking and steering (MaC) framework [9,10,11] has been
designed to ensure that the execution of a real-time system is consistent with
its requirements at run-time. It provides a language, called MEDL, to spec-
ify safety properties based on LTL [13]. The safety properties include both
computational and timing requirements. The safety properties are defined
in terms of events, conditions, auxiliary variables, and auxiliary functions.
Events are instantaneous incidents such as variable updates or the start/end
of a method call. Conditions are propositions about the program that may
be true or false for a duration of time. Those events and conditions can also

1 This research was supported in part by NSF CCR-9988409, NSF CCR-0086147, NSF
CCR-0209024, and ARO DAAD19-01-1-0473.
2 Email: {usa,arvinde,lee,sokolsky}@saul.cis.upenn.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sammapun, Easwaran, Lee and Sokolsky

be composed using connectives described in Section 2. Auxiliary variables
are temporary storage, which allows us, for example, to count the number of
occurrences of an event. Auxiliary functions return values and time stamps of
events. The MEDL language provides an elegant and intuitive way to specify
computational requirements. It, however, does not provide an intuitive way
to specify timing requirements, such as temporal ordering of events with com-
plex timing dependencies, timing constraints or counting of specific events in
a time interval.

The extension of MEDL called MEDL-RE [14] adds the ability to specify
ordering of events in the form of regular expressions (RE) over a customized
set of events, which offers users with clearer and less error-prone specifica-
tions. In this paper, we propose an efficient simulation of the corresponding
DFAs at runtime. By observing a sequence of events occuring in a target
system, a DFA generated by MEDL-RE matches the sequence of events with
a specific regular expression. However, because the composite events can be
triggered simultaneously and cannot be temporally ordered in any way, the
DFA must recognize these events for any ordering of the events. This means
if a regular expression has some inherent ordering of simultaneous events, the
DFA must accept all different permutations of such order. We refer to those
permutations as linearizations. To build such a DFA, we augment the original
DFA with alternative transitions to provide paths from one linearization to
another. We then prove that the original DFA and the augmented DFA are
equivalent. Only those DFAs whose underlying regular expressions have candi-
date simultaneous events in their relevant sets are augmented. The candidate
simultaneous events can be statically detected by building and traversing a
dependency graph described in Section 4.

The paper is organized as follows. Section 2 briefly explains an overview of
the MaC framework. Section 3 introduces an extension MEDL-RE. Section 4
discusses the construction of the dependency graph. Section 5 presents and
proves our augmented DFA algorithm. Section 6 presents related work. Lastly,
section 7 concludes the paper.

2 MaC Overview

2.1 MaC Architecture

The MaC system has been developed to ensure that a program runs correctly
with respect to its formal requirement. Fig. 1 shows the MaC architecture.
The system works as follows. A user specifies a requirement of a target pro-
gram in a formal language. Given a target program and the requirement, the
MaC system inserts a collection of probes or a filter into the target program.
During run-time, the execution of the probed target program is monitored and
checked by the MaC system. An event recognizer detects primitive events and
conditions from state information received from the filter. The primitive events

112

Sammapun, Easwaran, Lee and Sokolsky

Monitoring

Script

Event

Recognizer

Code

System

Running

Requirement

Specification

Steering

Script

Checker

co
m

p
il

at
io

n

events and

condition changes

Filter

steering

low-level

information

low-level

monitored events

and conditions

steering

actions

object names

Injector
invocations

steering action

Fig. 1. Overview of the MaC architecture

are change of value (update(object)), entering method (startM(method)),
and leaving method (endM(method)). The primitive conditions are boolean
variables or boolean statements composed by primitive typed variables in the
target program. These events and conditions are then sent to a run-time
checker, which determines whether or not the current execution history sat-
isfies the requirement specification. The execution history is captured from
a sequence of events sent by the event recognizer. If the run-time checker
detects any violation, it notifies the user and triggers an injector to take a
steering action specified in a steering script and steer the target program back
to a safe state.

2.2 MaC Languages

The MaC system provides three languages. The requirement specification or
the Meta-Event Definition Language (MEDL), based on an extension of a
linear temporal logic (LTL) [13], allows us to express a large subset of safety
properties of systems, including real-time properties. The monitoring script,
expressed in the Primitive Event Definition Language (PEDL), is used to
define what information is sent from a filter to the MaC system and how it
is transformed into events and conditions used in MEDL. The steering script
written in the Steering Action Definition Language (SADL) is used to specify
actions to be invoked when violations occur. See [9,10] for PEDL and SADL
details.

2.2.1 Events and Conditions

Events occur instantaneously during the system execution, whereas conditions
represent information that hold for a duration of time. For example, an event
denoting the call to method init occurs at the instant the control is passed
to the method, while a condition (angle < 30) holds as long as the value of
the variable angle does not exceed 30. The syntax of events and conditions

113

Sammapun, Easwaran, Lee and Sokolsky

is shown below.

E ::= e | start(C) | end(C) | E && E | E || E | E when C

C ::= c | defined(C) | [E,E) | !C | C && C | C || C | C ⇒ C

The boolean connectives used in events and conditions are defined in the usual
way. Events start(c) and end(c) are triggered when c becomes true and false,
respectively. An event e when c is triggered when e is triggered and c is true.
A condition defined(c) is true when c is defined. A condition [e1, e2) is true
between the occurrence of events e1 and e2 where e1 is included but e2 is not.
For formal semantics of events and conditions, see [9,11].

2.2.2 Meta Event Definition Language (MEDL)

MEDL includes events and conditions imported from PEDL, definitions of
composite events and conditions, safety properties, auxiliary variables, and
auxiliary functions. A safety property can be expressed as a condition or
as an event called an alarm. A safety property condition must always be
true during the execution whereas an alarm must never be raised. Auxiliary
variables can be used to define events and conditions. Auxiliary variables allow
us, for example, to count the number of occurrences of an event. Auxiliary
functions are time(e) and value(e), which return the time stamp and the
value of an event e, respectively.

3 Syntax and Semantics of MEDL-RE

This section describes the extension of the MEDL language to include the
specification of the ordering of events by expressing them as a regular expres-
sion and a frequency of events in a time interval.

3.1 Syntax

Let R be a set of regular expression names, e.g., R,R1, R2, etc. Let s be
statements in the MEDL-RE, sMEDL be the existing MEDL statements, Ē be
a list of events, r be regular expressions, and C be the conditions described in
Section 2.2.1. We define the syntax of the MEDL-RE extension as follows.

s ::= sMEDL Existing MEDL statements
| RE R { Ē } = < r > New MEDL-RE statement

r ::= E | r . r | r + r | r∗ Regular expressions
E ::= e | start(C) | end(C) Existing events

| E && E | E || E | E when C

| startRE(r) | success(r) | fail(r) Regular expression events
f ::= time(E) | value(E) | occur(E, C) Auxiliary functions

The MEDL-RE extension includes regular expressions, events startRE(r),
success(r), fail(r), and an auxiliary function occur(E,C). The regular
expressions, ranged over a set Σ of events, consists of events (E), concatenation

114

Sammapun, Easwaran, Lee and Sokolsky

ΣE = {E}
ΣR1+R2

= ΣR1
∪ ΣR2

ΣR1 . R2
= ΣR1

∪ ΣR2

ΣR∗ = ΣR

Fig. 2. A function ΣR, which returns the relevant event set of R

(r . r), union (r+r), and Kleene star (r∗). The event startRE(r) indicates
that we start observing the regular expression. The event success(r) indicates
that we have found a sequence of events that specifies the regular expression,
and the event fail(r) indicates that we have started observing but failed to
finish finding such a sequence. For an event E and a condition C, the auxiliary
function occur(E,C) returns a frequency or a number of occurrences of an
event E during the time interval when C holds true.

3.2 Semantics

Let ΣR in Fig. 2 denote a set of events specified in a RE R and ΣV denote
a customized set of events specified as Ē in the new MEDL-RE statement
shown in the syntax section. Then, a relevant event set of R is Σ = ΣR ∪
ΣV . We modify the model M defined in [9] as follows. A model M is a tuple
(S, τ, LC , LE, o), where S = {s0, s1, . . .} is a set of states, τ is a mapping from
S to the time domain, LC is a total function from S × C to {true, false,Λ}
where C denotes a set of condition names and Λ denotes undefined, and LE

is a partial function from S × E to a value domain where E denotes a set of
event names. For all ek where LE(si, ek) is defined, there is an order o(si, ek)
such that at time τ(si), an order for each occurrence ek is distinct. The order
o is a total and injective function that maps ek and si to an ordered set of
positive integers and o(si−1, ek) < o(si, el) for all i and any k, l.

The semantics of MEDL-RE is defined using a derivative of a RE [5]. For
any RE R and any alphabet a, a derivative of R with respect to a, denoted
by Da(R), is the RE, where Da(R) = {x ∈ Σ∗|ax ∈ R}. Fig. 3 and Fig. 4
show the semantics of a derivative of a RE and the function E(R) from Σ∗

to boolean, which tests whether ǫ ∈ R, respectively, where R1, R2 are regular
expressions, a, b ∈ Σ and a 6= b.

Besides the derivatives, we also need to define a function FIRST(R) and a
function Φo

M(R). FIRST(R) returns a set containing all events that can appear
as the first event in the RE R. Formally, FIRST(R) = {a ∈ Σ ∪ {ǫ} | ax ∈
R where x ∈ Σ∗}. Φo

M(R) represents the remainder of the RE R at an order
o after a sequence of derivatives. We define Φo

M(R) as follows.

Φ
o(si,e)
M (R) = R if M, τ(si) |= e where e ∈ FIRST(R)

Φ
o(si,e)
M (R) = De(Φ

o(si,e)−1
M (R)) if M, τ(si) |= e

We also define a language L (R) of R as follows.

L(ø) = ø L(ǫ) = {ǫ}

115

Sammapun, Easwaran, Lee and Sokolsky

Da(a) = ǫ

Da(b) = Λ
Da(Λ) = Λ
Da(ǫ) = Λ
Da(R1 + R2) = Da(R1) + Da(R2)
Da(R∗) = (Da(R)) . R∗

Da(R1 . R2) = (Da(R1)) . R2 if E(R) = False
(Da(R1)) . R2 + Da(R2) if E(R) = True

Fig. 3. A derivative of a regular expression R with respect to a (Da(R))

E(a) = False
E(Λ) = False
E(ǫ) = True
E(R1 + R2) = E(R1) ∨ E(R2)
E(R1 . R2) = E(R1) ∧ E(R2)
E(R∗) = True

Fig. 4. A function E(R), which tests whether ǫ ∈ R

L(a) = {a} L(R1 + R2) = L(R1) ∪ L(R2)
L(R1.R2) = {x1.x2|x1 ∈ L(R1) ∧ x2 ∈ L(R2)} L(R∗) = (L(R))∗

Using FIRST(R) and Φo
M(R), we define the startRE(R) event, success(R)

event, and the fail(R) event.

M, t |= startRE(R) iff M, t |= e where e ∈ FIRST(R)

M, t |= success(R) iff M, t |= e and ǫ ∈ FIRST(De(Φ
o(si,e)−1
M (R))) where t = τ(si)

M, t |= fail(R) iff M, t |= e and De(Φ
o(si,e)−1
M (R)) = Λ where t = τ(si)

The event startRE(R) is triggered when an occuring event is one of the events
that can appear as the first event in the RE R. The event success(R) is
triggered when an occuring event e causes the derivative of the remainder to
contain empty string, and the event fail(R) is triggered when an occuring
event e causes the derivative of the remainder to become undefined.

Next, we define a frequency function occur(e, c). A function occur(e, c)
returns the number of occurrences of an event e during the time interval that
a condition c holds true. occur(e, c) is defined as follows. Let f (si, e, c) denote
a frequency of e in c at time τ(si). At time τ(si), occur(e, c) = f(si, e, c).

f(si, e, c) = Λ if M, τ(si) 6|= c

= 0 if M, τ(si) |= start(c)
= f(si−1, e, c) if M, τ(si) |= c and M, τ(si) 6|= e

= f(si−1, e, c) + 1 if M, τ(si) |= c and M, τ(si) |= e

3.3 Examples

Two examples of requirements that need such timing dependencies are

(i) an event a must not occur three times in a row, and

116

Sammapun, Easwaran, Lee and Sokolsky

(ii) the ordered events w,x,y,z can occur out of order for less than ten times
when a condition c holds true.

Events are a, b, w, x, y, and z where events a and b are not related to events
w, x, y, and z, and vice versa. To specify those requirements in the existing
MEDL, we need a few auxiliary variables to keep track of when and how many
times events a, w, x, y, and z occur. The fragment of MEDL below shows how
we specify the above requirements in the original MEDL.

var aCount, wxyzCount;

alarm a3 = a when aCount == 3;

event wxyz = (y||z when [w,x)) ||

(z when [w, end([x,y)))) when c;

property wxyz10 = wxyzCount < 10;

a -> { aCount’ = aCount+1; }

b -> { aCount’ = 0; }

wxyz -> { wxyzCount’ = wxyzCount+1; }

The aCount variable keeps track of how many times an event a occurs. When-
ever a occurs, we increment it and whenever b occurs, we reset it. The alarm
a3 alerts users when aCount becomes 3. The event wxyz is triggered only
when c holds true and when y or z occurs between w and x or when z occurs
between x and y. The wxyzCount variable stores the number of times the
event wxyz has occured. The property wxyz10 alerts users when wxyzCount

is greater than 10.

Consider when we need to specify the ordering of more than four events, the
event such as wxyz can get very complicated because too many cases need to
be considered. This shows that writing requirements using the existing MEDL
is error-prone and difficult to understand. By adding regular expressions to
the language, an order of events can be expressed more intuitively. The below
fragment of the specification shows how to specify the example requirements
in the extended MEDL-RE.

RE a3RE {b} = <a.a.a>;

RE wxyzRE {} = <w.x.y.z>;

alarm a3 = success(a3RE);

property wxyz10 = occur(fail(wxyzRE),c) < 10;

The regular expression a3RE and wxyzRE denote the ordering of events a oc-
curring three times in a row and the ordering of the event w followed by the
events x, y, and z. The relevant set {b} in a3RE indicates that if an event
b occurs between two events a, then this sequence would fail to match a3RE.
However, the MEDL-RE would ignore an event x if it occurs between two
events a and would not fail the sequence. The relevant set {} in wxyzRE works
similarly. The alarm a3 alerts users when we successfully match the RE a3RE

while the property wxyz10 alerts users when the RE wxyzRE fails more than
ten times. The requirements now are much simpler and easier to understand
than the original MEDL.

117

Sammapun, Easwaran, Lee and Sokolsky

4 Implementation

An important property of monitoring is its ability to monitor target systems
as efficiently and quickly as possible using minimal system resources. Hence,
using a deterministic finite automaton (DFA) to monitor a RE is preferred
over a non-deterministic finite automaton (NFA). Several existing algorithms
have been proposed to efficiently construct and minimize a DFA from a given
RE. We have chosen the algorithm by Aho, Sethi and Ullman [2] because it
generates a DFA directly without generating an NFA. The empirical result by
Watson [15] also suggests that this DFA construction is efficient.

Simulation of a DFA involves the following steps. Identify a RE that has
the current event in its relevant set. Then compare the current event with
all the possible transitions from the current state of the DFA and take the
appropriate one. If the current event initiates the simulation of a DFA, then
it would trigger a startRE event. If the automaton moves to a final state, a
success event is triggered under certain conditions as specified in Section 5.
Similarly, the event causing the automaton to get stuck triggers a fail event.
However, the problem in DFA simulation arises when there are simultaneous
events generated by one primitive event or condition. Since there is no inherent
order amongst these simultaneous events, the DFA simulation must evaluate
multiple paths simultaneously for all possible permutations of these events.
This is expensive in terms of resource utilization and may also be non-viable
for certain applications especially in real time systems.

4.1 Causes of Simultaneous Events

The MaC language consists of high-level or composite events and conditions,
and low-level or primitive events and conditions described in Section 2.1
and 2.2. When primitive events or conditions are detected, the filter sends
them to the event recognizer in the order as they occur. These primitive
events and conditions can trigger composite events or change the value of
conditions. While the primitive events and conditions are ordered, we can-
not order the composite events triggered by one primitive event or conditions
because all of the composite events occur at the same time.

Since REs can be defined on composite events that can occur individually
and simultaneously, we need a way to recognize the events that can occur
simultaneously. If two events can occur simultaneously, then their order is
insignificant and their concatenation can be permuted without changing the
meaning. To handle simultaneous events inexpensively, we propose the fol-
lowing steps. During the static phase, we determine if events used in the REs
could occur simultaneously. If such events exist, we augment the original DFA
with alternative transitions. At runtime, we try to take a step using the origi-
nal transitions. If it is not possible, we try to take a step using the alternative
transitions only if there exists a set of events from among the relevant set of
this RE that have occured simultaneously.

118

Sammapun, Easwaran, Lee and Sokolsky

e1 = update(A.x) when A.c1;

e2 = update(A.x) when A.c1 && A.c2;

e3 = update(A.y) when A.c2;

RE test {} = e1 . e2 . e3;

Fig. 5. Monitoring script

update(A.x) update(A.y)

when

A.c1 A.c2

when&&

e1

e2

e3

when

Fig. 6. Dependency graph

4.2 Detecting Simultaneous Events

To detect possible simultaneous events statically, we construct a dependency
graph from the syntax of events and conditions using connectives described in
Section 2. The dependency graph G = (V,E) is a directed graph where the
vertices V are connectives, events, and conditions, and the edges E represent
dependency between them. Let e1, e2 be events or conditions. Then, (e1, e2) ∈
E if and only if e1 is used to compose e2. For example, if e3 = e1||e2, then
(e1, ||), (e2, ||), and (||, e3) are in E. Fig. 5 shows an example monitoring script,
and Fig. 6 shows the corresponding dependency graph. In the figures, there are
two primitive events update(A.x), update(A.y) and two primitive conditions
A.c1, A.c2. All of them are vertices at the bottom of Fig. 6. Since the event
update(A.x) and the condition A.c1 are used to compose a connective when,
edges (update(A.x), when) and (A.c1, when) are in E. Since the event e1 is
composed of the connective when, an edge (when, e1) is also in E. The events
e2, e3 are constructed similarly.

We denote that an event e2 depends on an event e1 if and only if there
exists a path from an event e1 to an event e2 in G. We also denote that if
there is a path to each of e1 and e2 from a common vertex in the graph, then
they can occur simultaneously. Thus, a set of events that can be reached from
the same primitive event in the dependency graph can all occur simultane-
ously. For example, in Fig. 6, the events e1, e2 depend on the same primitive
event update(A.x), and therefore, they can occur simultaneously. To detect
dependency, we traverse the graph in a bottom-up fashion using BFS.

However, the analysis of the dependency graph can yield a false positive
result. This means that simultaneous events obtained from the graph might

119

Sammapun, Easwaran, Lee and Sokolsky

never occur in the actual system. For example, consider the events in Fig. 6.
Based on the dependency graph, the events e1 and e2 can occur simulta-
neously because both depend on the event update(A.x). Suppose that the
conditions A.c1 and A.c2 are boolean variables in the target program and
they are never true at the same time. Then, events e1 and e2 never occur
simultaneously.

There are two special cases. The first case is when an event is composed
using an and connective (e1 && e1). The event with the && connective is trig-
gered if and only if both of its two arguments e1 and e2 occur simultaneously.
Therefore, if there exists an && connective along the path, the two arguments
of the && connective must depend on one common vertex. Otherwise, the
event with the && connective will never be triggered and therefore, can be
eliminated from possible simultaneous events. The second case is when an
event is composed using a when connective (e when c), which consists of an
event side e and a condition side c. The event with the when connective is
triggered if and only if the event e occurs when the condition c is true. Assume
the two events we are detecting are e1 and e2, and e1 is composed using a when

connective. If the common vertex of e1 and e2 lies on the event side of the when
connective in e1, then e1 and e2 can occur simultaneously. If it lies only on
the condition side, then e1 and e2 cannot occur simultaneously. For example,
the events e2 and e3 in Fig. 6 cannot occur simultaneously. This is the case
because update(A.x) and update(A.y) cannot occur simultaneously based
on our assumption that all primitive events are always ordered. However, the
events e1 and e2 can occur simultaneously if both A.c1 and A.c2 are true at
the same time.

A set of possible simultaneous events obtained by the above process can
be used to identify REs that would require augmentation. Only those regular
expressions that have a subset of simultaneous events in their relevant sets
need to be augmented.

5 Algorithm for Augmenting and Simulating DFA with

Simultaneous Events

Based on the information of simultaneous events provided in Section 4, we
incorporate additional information into the DFA statically. We claim that this
additional information can assist the simultaneous simulation of multiple paths
in the DFA efficiently. The following algorithm is proposed to incorporate this
additional information into the DFA.

Let the DFA be a minimal DFA generated using the algorithm for DFA
generation and minimization as described in Section 4. We call this DFA as
DFAorg and the augmented DFA generated by the algorithm as DFAaug. We
construct DFAaug under the following premises.

(i) The set of simultaneous events generated by the event recognizer does

120

Sammapun, Easwaran, Lee and Sokolsky

not constitute multiple occurrences of the same event. This assumption is
valid because the MaC system does not record the number of occurrences
of an event at any given time instant. It only records the presence or
absence of the event occurrence.

(ii) DFAorg consists of a single accepting state. Since we detect only the
shortest sequence accepted by DFAorg, we can remove all outgoing tran-
sitions from all the accepting states. The minimization procedure would
then merge those states into one.

Let DFAorg = (Q,Σ, T, q0, qf) where Q is a set of finite states, Σ is a rel-
evant event set of R as described in Section 3.2, T : Q × Σ → Q is a
partial transition function, q0 ∈ Q is the start state, and qf ∈ Q is the
single accepting state. Given DFAorg, the algorithm constructs DFAaug

= (Q,Σ, T, q0, qf , D, U,ES, Talt) where Q,Σ, T, q0, and qf are obtained from
DFAorg, D : T → N ∪ {0} is the distance annotation of a transition indi-
cating its longest distance from qf , U : T → N ∪ {0} is the unique distance
function that maps each transition of a state to a unique natural number
or zero, ES : Q → P(Σ∗) is an event string annotation of a state, and
Talt : Q × Σ → Q is a partial alternative transition function. We denote
T (q, e) = Λ iff (q, e) 6∈ dom(T) and denote 〈q, e, q′〉 ∈ T iff T (q, e) = q′.
D,U,ES, and Talt are described in further details in the following sections.
The algorithm for DFAaug construction has two phases: Annotation of tran-
sitions and states, and generation of alternative transitions.

5.1 Phase 1 : Annotation of Transitions and States

During this phase, we annotate each transition t ∈ T of DFAorg with a
numeric value denoted as D(t), such that the value

(i) equals the distance of the transition t from the accepting state qf . This
distance is equal to the number of transitions to be traversed to reach qf

from the current state using this transition t.

(ii) denotes the maximum of all such distances.

Transitions that constitute cycles or self loops are ignored during this phase.
This distance generation phase of the algorithm is shown in Fig. 8. This
annotation can be done by traversing the DFA using a BFS algorithm starting
at qf .

This distance information D(t) will assist in ordering of transitions for
simulation at runtime. We will traverse one of the outgoing transitions from
the current state based on the distance values associated with the transitions,
i.e., lower distance value first. The rationale behind this choice is that transi-
tions that are closer to the accepting state should be attempted before those
that are farther away from it. In case of a conflict between transitions (i.e.,
two transitions having the same distance value), we pick transitions based on
the ordering of corresponding events in the relevant set. In Fig. 8 the start

121

Sammapun, Easwaran, Lee and Sokolsky

e5

e3

e4e2

e6

e4e1

e2

S

D

A B

E

C

F

e1

Fig. 7. Original minimized DFAorg

{e2} {e2e1e4}

{e1e2e4,

e1e2e3e4}{e1}

{e1e2,

e1e2e3}

e5 / 0

e3

e4 / 1e2 / 2

e6 / 0

e4 / 1e1 / 2

e2 / 3

S

D

A B

E

C

F

e1 / 3

{e2e1}

Fig. 8. Distance D and event string ES annotations of DFAaug

state S has two outgoing transitions both numbered 3. We will order these
transitions based on the ordering of events e1 and e2 in the relevant set. Let
this unique ordering of transitions t be called U(t).

During this phase, we also annotate each state of DFAaug with additional
information, indicating the set of possible sequences of input events that could
be encountered to reach this state starting from the start state q0. Each such
input sequence is called the event string of that state. Please note that there
can be multiple event strings for each state. This annotation step is shown
in Fig. 8. The event string set for each state q, called ES(q), is equal to the
concatenation of the set of event strings of all its predecessor states with the
corresponding transitions. All states that have self loops on an event e have
the event e appended to each of their event strings after the event strings are
replicated. As shown in Fig. 8, the state B has a self loop on event e3. Its
set of event strings are then given by the event string {e1e2} for the normal
transition and the event string {e1e2e3} for the self loop. In case there is
a cycle abca, then abc is appended to each of the event strings of the states
that constitute the cycle after replication of the event strings. Please note
that determination of event strings proceeds to the next state only after it is

122

Sammapun, Easwaran, Lee and Sokolsky

1 for each state q ∈ Q − {q0, qf}

2 for each event string es ∈ ES(q)

3 for each event e ∈ Σ such that T (q, e) = Λ

4 for each state q1 ∈ Q − {q0} such that

5 max∀ei∈Σ,T (q1,ei) 6=Λ(U(T (q1, ei))) ≥ min∀ei∈Σ,T (q,ei) 6=Λ(U(T (q, ei)))

6 for each event string es1 ∈ ES(q1)

7 if (Hashed(es1) == Hashed(es))

8 then Add 〈q, e, T (q1, e)〉 to Talt (if T (q1, e) 6= Λ)

9 else if (Hashed(es) == Hashed(Remove(e, es1)))

10 then Add 〈q, e, q1〉 to Talt

Fig. 9. Algorithm to generate alternative transitions Talt

completely determined for the present state, i.e., all self loops for the current
state must be resolved before proceeding to the next state. Cycles would be
an exception here because we cannot identify cycles until we proceed ahead
and return back to the state. Even in this case, the algorithm will proceed to
states following the cycle only after all the event strings for all the states in
the cycle have been determined.

5.2 Phase 2: Generation of Alternative Transitions.

Before we proceed, we need to define the terms linearization and equivalence
of linearization.

Linearization Linearization is a total order of a set of events. If this set con-
sists of events that have occured simultaneously then the ordering of such
simultaneous events in the set is one linearization of this set. A different or-
dering of these simultaneous events then constitutes a different linearization
of this set.

Equivalence Two linearizations are equivalent if and only if they are different
permutations of the same set of events.

During this phase, we add alternative transitions to appropriate states in
DFAorg. The alternative transitions take the DFA from a state represent-
ing one linearization to another state representing an equivalent lineariza-
tion for some set of simultaneous events. Let Remove(e, es) be an event
string obtained by removing one occurrence of e from an event string es. Let
Hashed(es) be a hash value associated with an event string es where the or-
dering of events in es is insignificant. This means two event strings have the
same hash value if and only if they are equivalent linearizations. For example,
Hashed(abc) = Hashed(cab) but Hashed(aabc) 6= Hashed(abc).

123

Sammapun, Easwaran, Lee and Sokolsky

The algorithm shown in Fig. 9 compares the event strings of two states
to see whether they are different linearizations of the same input sequence.
If so, we say that the two event strings are equivalent linearizations of the
input sequence, and we could add alternative transitions from one state to
another without changing the meaning of the DFA. Since we always choose
a transition t from a state q with the lowest U(t) first, the order of paths
taken is unique. Thus, we need to add alternative transitions only from a
state with lower U(t) to the states with higher U(t). This means that if q and
q1 are states, then we add alternative transitions from q to q1 if and only if
the maximum value of U(t1) among all transitions t1 of q1 is greater than the
minimum value of U(t) among all transitions t of q (lines 4–5). When adding
the alternative transitions annotated with an event e from q to q1, we ensure
that the existing transitions in q do not have a transition annotated with the
event e (line 3). Thus, the resulting finite automata is still deterministic.

There are two different cases which the algorithm handles. Assume es ∈
ES(q) and es1 ∈ ES(q1) are two event strings such that q has lower U(t) than
q1. The first case is when some event strings of the two states q and q1 have
different but equivalent linearizations. For example, es = abc and es1 = bca.
Here the algorithm adds an alternative transition on the current event e from
the state q to the state represented by T (q1, e) (lines 7–8). This transition
is added for each event e such that there are no transitions currently present
from q on any of these events. This case is shown in Fig. 10. Here, q=F , q1=C,
es=e2e1e4, es1=e1e2e4 and e=e5. The algorithm then adds a transition on
e5 to T (C, e5) which is the accepting state qf .

The second case is when Remove(e, es1) and es represent equivalent lin-
earizations for the two states q and q1. For example, if es = ba, es1 = aeb, and
the current event is e, then the removal of e from es1 returns an event string
which is equivalent to es. Here the algorithm adds an alternative transition on
the current event e from q to q1 (lines 9–10). Again the transitions are added
only for those events that currently do not have transitions from q. This case
is shown in Fig. 11. Here, q=F , q1=C, es=e2e1e4, es1=e1e2e3e4 and e=e3.
The algorithm then adds a transition on e3 to C.

After completion of this phase, we can delete the event string information
from all the states except the ones with D(t) values of 1. We call these
states the penultimate states. Their event strings will be used to verify the
acceptance of the input sequence. This process will be explained in the next
section.

5.3 DFA Simulation at Runtime

At runtime, we simulate DFAaug without the alternative transitions as long
as there is no occurrence of simultaneous events. On the first occurrence
of simultaneous events, we activate all the alternative transitions. From the
current state, we then take the path which is closest to the accepting state,

124

Sammapun, Easwaran, Lee and Sokolsky

{e2} {e2e1e4}

{e1e2e4,

e1e2e3e4}{e1}

{e1e2,

e1e2e3}

e5

e5 / 0

e3

e4 / 1e2 / 2

e6 / 0

e4 / 1e1 / 2

e2 / 3

S

D

A B

E

C

F

e1 / 3

e3

{e2e1}

Fig. 10. Case 1 of the algorithm in Fig. 9

{e2} {e2e1e4}

{e1e2e4,

e1e2e3e4}{e1}

{e1e2,

e1e2e3}

e5

e5 / 0

e3

e4 / 1e2 / 2

e6 / 0

e4 / 1e1 / 2

e2 / 3

S

D

A B

E

C

F

e1 / 3

e3 e3

{e2e1}

Fig. 11. Case 2 of the algorithm in Fig. 9

i.e., the path with the lowest U(t). Next, we simulate DFAaug normally taking
into consideration the alternative transitions and U(t).

Because events that occur simultaneously can also occur individually, some
linearization that DFAaug accepts might not be accepted by DFAorg. When
DFAaug reaches the accepting state, we verify by comparing the input se-
quence and the event strings in the penultimate states that have an original
transition on the last event in the input sequence to the accepting state. Be-
cause DFAorg is minimal, only one such penultimate state exists. If they
match, DFAaug accepts that input sequence. Otherwise, DFAaug rejects.

To be able to verify, we need to keep the history of all events seen from
the start state. The history also keeps information about which events have
occured simultaneously and which have occured individually. We do so by
storing the input sequence as an array of simultaneous sets. To handle Kleene
star, we have a flag to indicate whether or not each state has been visited.
We then keep only events that take the simulation from one state to another
unvisited state. This way, the resulting history string will resemble the way
event strings are calculated and simplify our verification algorithm. Let

125

Sammapun, Easwaran, Lee and Sokolsky

1 i = 0, j = 0

2 for each ei ∈ ESelast

3 if ei ∈ hj

4 then Remove ei from hj

5 else

6 then Reject this input string

7 if hj is empty

8 then j = j + 1

9 Accept this input string (if it has not been rejected)

Fig. 12. Verifying Algorithm

H = A history of the input sequence.
elast = The last event in the input sequence.
ESelast

= A set of event strings associated with the penultimate state, which
has a transition in DFAorg on elast to the accepting state.

ei = A set of events in an event string where i is the position in the
event string.

hj = A set of simultaneous events hj ∈ H where hj occurs before hj+1.

The verifying algorithm in Fig. 12 is straightforward. For each ei ∈ ESelast

(line 2), we check if ei occurs in the current simultaneous set (line 3). If
not, the input string is rejected (line 6). When the current set is com-
pletely parsed without being rejected, we move to the next set (lines 7–8).
If we reach the end of ESelast

without being rejected, we accept the input
sequence (line 9). For example, let the input sequence recorded when the
DFA accepted be {e1e2, e4, e5} where events e1 and e2 have occured simulta-
neously. Since the last event in the sequence, i.e., elast = e5, we have ESelast

= {e1e2e4, e1e2e3e4}. Now since event string {e1e2e4} in ESelast
matches

with the recorded input sequence {e1e2, e4}, DFAaug will accept this input
sequence.

5.4 Analysis of the Algorithm

This augmentation algorithm has the following running times during each
phase. For phase 1, we run BFS twice, and thus the running time is O(s + t)
where s = |Q| is the number of states , and t = |dom(T)| is the number of
transitions. For phase 2, the running time is O(s2 · e · es2) where e = |Σ| is
the number of events in the relevant set and es =

∑
q∈Q |ES(q)| is the number

of possible event strings in the regular expression, (worst case analysis). This
then constitutes the compile time penalties for augmenting the DFA. The

126

Sammapun, Easwaran, Lee and Sokolsky

table in Fig. 13 compares the running time of this algorithm with the naive
algorithm of dynamically simulating all possible paths. Since there can be
O(2n) such paths where n is the length of the input string, the dynamic
simulation approach can impose an additional running time of O(2n). In our
algorithm, O(n) added to the running time is for verification of the input
sequence when DFAaug accepts. The additional space is only O(n2) because
we add alternative transitions only from lower numbered to higher numbered
paths, which is

∑n

i=1 i = O(n2). Therefore, our algorithm is clearly prefered
over the naive algorithm.

Algorithm Running Time Space

Dynamic simulation of all paths O(2n) 0

Augmenting with alternative transitions O(n) O(n2)

Fig. 13. Comparison between two algorithms

5.5 Equivalence of DFAorg and DFAaug

In this section, we provide a proof that DFAorg and DFAaug are equivalent.

Theorem 5.1 DFAaug accepts if and only if DFAorg accepts.

Proof.

Part 1: If DFAorg accepts, DFAaug accepts.

This statement can be restated as if DFAorg accepts some linearization of
the input sequence, then DFAaug accepts all of its equivalent linearizations.
We define a path and a set of paths as follows. A path in DFAorg is any path
from the start state q0 to the accepting state qf . Every such path is uniquely
ordered by the algorithm. A set of paths is an enumeration of all possible
paths from q0 to qf of DFAorg. By the description of the algorithm, every
alternative transition is a transition from one path to another path in the set,
and the transitions are always taken from lower U(t) to higher U(t).

Let a be the event currently being considered. Let q1 and q2 be the two
states being considered. Let es1 and es2 be the two event strings associated
with q1 and q2, respectively. Assume the current state is q1, and therefore,
es1 is one linearization of input seen so far. The algorithm has the following
alternatives.

(i) The event string es2 is a different equivalent linearization of input seen
so far, i.e., (Hashed(es1) = Hashed(es2)). Then, the algorithm adds
an alternative transition from q1 to a state q3 on a such that a tran-
sition from q2 to q3 on a exists, i.e., T (q2, a) = q3. Thus, this al-
ternative transition takes a step from one linearization to the other.
(Hashed(concat(es1, a)) = Hashed(concat(es2, a))).

127

Sammapun, Easwaran, Lee and Sokolsky

(ii) The removal of a from es2 is a different equivalent linearization of the
input seen so far. (Hashed(es1) = Hashed(Remove(a, es2))). Then, this
algorithm adds an alternative transition from q1 to q2 on a. Thus again
this alternative transition takes a step from one linearization to the other.
(Hashed(concat(es1, a)) = Hashed(es2)).

Now we prove that such alternative transitions exist for every pair of equiv-
alent linearizations. Let states q1, q2, q3, q4 belong to paths p1, p2, p3, p4,
respectively, and let the ordering of these paths be p1 < p2 < p3 < p4. Then
the ordering of states is q1 < q2 < q3 < q4. If one of the event strings as-
sociated with each of these states are different equivalent linearizations and
the ordering is as given above, then it can be seen that the algorithm repeats
itself for each pair of states (q1, q2), (q1, q3), (q1, q4), (q2, q3), (q2, q4) and (q3, q4)
in that order. Thus, the algorithm provides a path to go from the current lin-
earization of the input to any other different equivalent linearization governed
by the unique ordering of linearizations (or paths).

Since at runtime we will simulate DFAaug based on the ordering of the
paths; from a given path of U(t) = k, we always have a path using the al-
ternative transitions to all paths with U(t) greater than k and having some
equivalent linearization. Thus, DFAaug will eventually reach the path, which
represents the linearization for which DFAorg accepts. Once it reaches this
path, the process of picking original transitions first ensures that we will never
leave this path.

Part 2: If DFAaug accepts, DFAorg accepts.

We prove this case by contradiction. Assume that DFAaug accepts and
DFAorg does not for some input sequence. By the definition of the algorithm,
DFAaug accepts if the following conditions exist.

(i) Simulation reaches the accepting state of DFAaug.

(ii) The input sequence on which DFAaug has accepted is equivalent to the
concatenation of an event elast and some event string associated with the
penultimate state which has a transition on an event elast to the accepting
state, where elast is the last event that occurs in the input sequence.

From the definition of event strings at a state, we can claim that the event
string stored at the penultimate state is equal to a string parsed by DFAorg to
reach this state. This claim is valid because while determining event strings,
we use only the original transitions present in DFAorg. The transition taken
from the penultimate state to reach the accepting state is also an original
transition. Therefore, the event string concatenated by the last transition is
accepted by DFAorg, contradicting the assumption above. 2

128

Sammapun, Easwaran, Lee and Sokolsky

6 Related Work

There are a few existing works that incorporate regular expressions into logic.
The ForSpec Temporal Logic (FTL) [3], Intel’s new formal specification lan-
guage, extends a linear temporal logic [13] with the ability to specify all ω-
regular properties. FTL allows a user to define temporal connectives over time
windows, regular sequences of Boolean events, and then relate such events via
special connectives. Sugar [4] adds an extensive set of operators including
regular expressions as a syntactic sugar to CTL [7]. Property Specification
Language [1] is a specification language for hardware modeling and verifica-
tion, which supports LTL [13] and extended regular expressions. Monitoring
oriented Programming (MoP) [6] provides a monitoring architecture based
on LTL [13] and extended regular expressions. Temporal Rover [8] is an ar-
chitecture that helps a system do monitoring. Its specification language uses
LTL [13] and MTL [12] with regular expressions and Time-Series. Time-Series
observes temporal properties over time and is used for properties like stabil-
ity, monotonicity, temporal average, sum, and max/min value. Comparing
to the MEDL-RE based on LTL and regular expressions, FTL [3], MoP [6],
and Temporal Rover [8] provide similar languages based on LTL and/or MTL
and regular expressions while Sugar [4]’s language is based on CTL and sim-
ilar regular expressions. However, none of them seem to have the issue of
simultaneous events and therefore no algorithm for checking dependency and
augmenting a DFA has been proposed.

7 Conclusion

We have presented an algorithm to simulate an augmented DFA for the ex-
tension MEDL-RE. The MEDL-RE incorporates regular expressions, which
provide a more intuitive and less error-prone language to express complex de-
pendencies between sequence of events, timing constraints, and a frequency of
events during a time interval. The events associated with a regular expression
offers the ability to detect the instance when the regular expression starts and
the instance when we succeed or fail to find the regular expression. The DFA
is augmented by adding alternative transitions after we statically detect the
possibility of simultaneous events. We also prove that the augmented DFA is
equivalent to the original DFA.

References

[1] Accellera Organization, Inc. Property Specification Language Reference
Manual, Version 1.01, 2003. http://www.accellera.org/.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

129

http://www.accellera.org/

Sammapun, Easwaran, Lee and Sokolsky

[3] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The
Forspec Temporal Logic: A New Temporal Property-Specification Language.
In Tools and Algorithms for Construction and Analysis of Systems, pages 296–
211, 2002.

[4] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.
The Temporal Logic Sugar. Lecture Notes in Computer Science, 2102:363–367,
2001.

[5] J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM,
11(4):481–494, 1964.

[6] F. Chen and G. Rosu. Towards Monitoring-Oriented Programming: A
Paradigm Combining Specification and Implementation. In Proceedings of the
3nd International Workshop on Run-time Verification, July 2003.

[7] E. M. Clarke and E. A. Emerson. Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic. In Logic of Programs: Workshop Lecture
Notes in Computer Science Vol 131, Dexter and Kozen (editors), Yorktown
Heights, New York, 1981. Springer-Verlag.

[8] D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In
Proceedings of the 2003 Computer Aided Verification Conference (CAV), July
2003.

[9] M. Kim. Information Extraction for Run-time Formal Analysis. PhD thesis,
University of Pennsylvania, 2001.

[10] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring, Checking,
and Steering of Real-Time Systems. In Proceedings of the 2nd International
Workshop on Run-time Verification, July 2002.

[11] M. Kim, M. Viswanathan, S. K. Hanêne Ben-Abdallah, I. Lee, and O. Sokolsky.
Formally Specified Monitoring of Temporal Properties. In Proceedings of the
European Conference on Real-Time Systems - ECRTS’99, pages 114–121, June
1999.

[12] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.
RealTime Systems, 2(4):255–299, 1990.

[13] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

[14] U. Sammapun and O. Sokolsky. Regular Expressions for Run-Time Verification.
In Proceedings of the 1st International Workshop on Automated Technology for
Verification and Analysis, Dec. 2003.

[15] B. W. Watson. Taxonomies and Toolkits of Regular Languages Algorithms.
PhD thesis, Eindhoven University of Technology, 1995.

130

	Introduction
	MaC Overview
	MaC Architecture
	MaC Languages

	Syntax and Semantics of MEDL-RE
	Syntax
	Semantics
	Examples

	Implementation
	Causes of Simultaneous Events
	Detecting Simultaneous Events

	Algorithm for Augmenting and Simulating DFA with Simultaneous Events
	Phase 1 : Annotation of Transitions and States
	Phase 2: Generation of Alternative Transitions.
	DFA Simulation at Runtime
	Analysis of the Algorithm
	Equivalence of DFAorg and DFAaug

	Related Work
	Conclusion
	References

