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Abstract

The paper presents approaches to the validation of optimizing compilers. The em-
phasis is on aggressive and architecture-targeted optimizations which try to obtain
the highest performance from modern architectures, in particular EPIC-like micro-
processors. Rather than verify the compiler, the approach of translation validation
performs a validation check after every run of the compiler, producing a formal
proof that the produced target code is a correct implementation of the source code.

First we survey the standard approach to validation of optimizations which pre-
serve the loop structure of the code (though they may move code in and out of
loops and radically modify individual statements), present a simulation-based gen-
eral technique for validating such optimizations, and describe a tool, VOC-64, which
implements these technique. For more aggressive optimizations which, typically, al-
ter the loop structure of the code, such as loop distribution and fusion, loop tiling,
and loop interchanges, we present a set of permutation rules which establish that
the transformed code satisfies all the implied data dependencies necessary for the
validity of the considered transformation. We describe the necessary extensions to
the VOC-64 in order to validate these structure-modifying optimizations.

Finally, the paper discusses preliminary work on run-time validation of speculative
loop optimizations, that involves using run-time tests to ensure the correctness of
loop optimizations which neither the compiler nor compiler-validation techniques
can guarantee the correctness of. Unlike compiler validation, run-time validation
has not only the task of determining when an optimization has generated incorrect
code, but also has the task of recovering from the optimization without aborting
the program or producing an incorrect result. This technique has been applied
to several loop optimizations, including loop interchange, loop tiling, and software
pipelining and appears to be quite promising.
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1 Introduction

There is a growing awareness, both in industry and academia, of the crucial
role of formally proving the correctness of safety-critical portions of systems.
Most verification methods focus on verification of specification with respect
to requirements, and high-level code with respect to specification. However,
if one is to prove that the high-level specification is correctly implemented in
low-level code, one needs to verify the compiler which performs the transla-
tions. Verifying the correctness of modern optimizing compilers is challenging
because of the complexity and reconfigurability of the target architectures,
as well as the sophisticated analysis and optimization algorithms used in the
compilers.

Formally verifying a full-fledged optimizing compiler, as one would verify
any other large program, is not feasible, due to its size, evolution over time,
and, possibly, proprietary considerations. Translation Validation is a novel
approach that offers an alternative to the verification of translators in gen-
eral and of compilers in particular. Using the translation validation approach,
rather than verify the compiler itself one constructs a validating tool which, af-
ter every run of the compiler, formally confirms that the target code produced
is a correct translation of the source program.

The introduction of new families of microprocessor architectures, such as
the EPIC family exemplified by the Intel IA-64 architecture, places an even
heavier responsibility on optimizing compilers. Static compile-time depen-
dence analysis and instruction scheduling is required to exploit instruction-
level parallelism in order to compete with other architectures, such as the
super-scalar class of machines where the hardware determines dependences
and reorders instructions at run-time. As a result, a new family of sophis-
ticated optimizations have been developed and incorporated into compilers
targeted at EPIC architectures.

Prior work ([PSS98a]) developed a tool for translation validation, CVT,
that succeeded in automatically verifying translations involving approximately
10,000 lines of source code in about 10 minutes. The success of CVT critically
depends on some simplifying assumptions that restricts the source and target
to programs with a single external loop, and assume a very limited set of
optimizations.

Other approaches [Nec00,RM00] considered translation validation of less
restricted languages allowing, for example, nested loops. They also considered
a more extensive set of optimizations. However, the methods proposed there
were restricted to structure preserving optimizations, and could not directly
deal with more aggressive optimizations such as loop distribution and loop
tiling that are often used in more advanced optimizing compilers.

Our ultimate goal is to develop a methodology for the translation valida-
tion of advanced optimizing compilers, with an emphasis on EPIC-targeted
compilers and the aggressive optimizations characteristic to such compilers.
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Our methods will handle an extensive set of optimizations and can be used
to implement fully automatic certifiers for a wide range of compilers, ensur-
ing an extremely high level of confidence in the compiler in areas, such as
safety-critical systems and compilation into silicon, where correctness is of
paramount concern.

Initial steps towards this goal are described in [ZPFG02]. There, we de-
velop the theory of correct translation. We distinguish between structure
preserving optimizations, that admit a clear mapping of control points in the
target program to corresponding control points in the source program, and
structure modifying optimizations that admit no such mapping. For Struc-
ture Preserving optimizations, that cover most high-level optimizations, we
provide a general proof rule for translation validation of structure preserving
transformations, present a tool (voc-64) that implements the proof rule on an
EPIC compiler (SGI Pro-64). A summary of the work is in Section 2.

A more challenging class of optimizations does not guarantee such corre-
spondence between control points in the target and the source. An important
subclass of these optimizations, which is the focus of the rest of the this paper,
is the reordering transformations that merely changes the order of execution
of statements, without altering, deleting, and adding to them. Typical opti-
mizations belonging to this class are loop distribution and fusion, loop tiling,
and loop interchange.

For the validation of these reordering transformations we explore “permu-
tation rules” in Section 3. The permutation rules call for calculating which
are the reordered statements, and then proving that the reordering preserves
the observable semantics.

In some cases, it is impossible to determine during compilation time,
whether a desired optimization is legal. This is usually because of limited
capability to check effectively that syntactically different index expressions
refer to the same array location. One possible remedy to this situation is to
adopt an aggressive optimization that performs the loop transformation nev-
ertheless, but keep checking in run-time that no dangerous aliasing occurs. In
case the runtime checks detect an aliasing that endanger the validity of the
optimization, the code escapes to an unoptimized version of the original loop,
where it completes the computation at a slower but guaranteed correct man-
ner. This method, which builds on the theory of the permutation conditions
is presented in Section 4.

Thus, the work reported here concerns “run-time verification” on two lev-
els. First, the “translation validation” approach can be viewed as a run-time
verification of the optimizing compiler, since in conjunction with every run of
the compiler we run the validator tool to check upon the correctness of the
compiler run. Then, the speculative optimization approach applies run-time
monitoring and verification to the target code – continuously checking the va-
lidity of the applied transformation, and escaping to an unoptimized version
as soon as this validity is compromised.
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1.1 Related Work

The work here is an extension of the work in [ZPFG02]. The work in [Nec00]
covers some important aspects of our work. For one, it extends the source
programs considered from single-loop programs to programs with arbitrarily
nested loop structure. An additional important feature is that the method
requires no compiler instrumentation at all, and applies various heuristics
to recover and identify the optimizations performed and the associated refine-
ment mappings. The main limitation apparent in [Nec00] is that, as is implied
by the single proof method described in the report, it can only be applied to
structure-preserving optimizations. In contrast, our work can also be applied
to structure-modifying optimizations, such as the ones associated with ag-
gressive loop optimizations which are a major component of optimizations for
modern architectures.

Another related work is [RM00] which proposes a comparable approach
to translation validation, where an important contribution is the ability to
handle pointers in the source program. However, the method proposed there
assumes full instrumentation of the compiler, which is not assumed here or in
[Nec00].

More weakly related are the works reported in [Nec97] and [NL98], which
do not purport to establish full correctness of a translation but are only in-
terested in certain “safety” properties. However, the techniques of program
analysis described there are very relevant to the automatic generation of re-
finement mappings and auxiliary invariants.

2 Translation Validation of Optimizing Compilers

We outline voc, the general strategy for Validation of Optimizing Compilers
and describe the theory of validation of structure preserving optimizations.
A more detailed description is in [ZPFG02]. We conclude the section with
an example of voc-64, our tool for voc of the global optimizations of the SGI
PRO-64 compiler.

The compiler receives a source program written in some high-level lan-
guage, translates it into an Intermediate Representation (IR), and then applies
a series of optimizations to the program – starting with classical architecture-
independent global optimizations, and then architecture-dependent ones such
as register allocation and instruction scheduling. Typically, these optimiza-
tions are performed in several passes (up to 15 in some compilers), where each
pass applies a certain type of optimization.

In order to prove that the target code is a translation of the source code,
we first give common semantics to the source and target languages using the
formalism of Transition Systems (TS’s). The notion of a target code T being
a correct implementation of a source code S is then defined in terms of refine-
ment, stating that every computation of T corresponds to some computation
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of S with matching values of the corresponding variables.

The intermediate code is a three-address code. It is described by a flow
graph, which is a graph representation of the three-address code. Each node
in the flow graph represents a basic block, that is, a sequence of statements
that is executed in its entirety and contains no branches. The edges of the
graph represent the flow of control.

2.1 Transition Systems

In order to present the formal semantics of source and intermediate code
we introduce transition systems, TS’s, a variant of the transition systems of
[PSS98b]. A Transition System S = 〈V,O, Θ, ρ〉 is a state machine consisting
of:

• V a set of state variables,

• O ⊆ V a set of observable variables,

• Θ an initial condition characterizing the initial states of the system, and

• ρ a transition relation, relating a state to its possible successors.

The variables are typed, and a state of a TS is a type-consistent interpretation
of the variables. For a state s and a variable x ∈ V , we denote by s[x] the value
that s assigns to x. The transition relation refers to both unprimed and primed
versions of the variables, where the primed versions refer to the values of the
variables in the successor states, while unprimed versions of variables refer to
their value in the pre-transition state. Thus, e.g., the transition relation may
include “y′ = y +1” to denote that the value of the variable y in the successor
state is greater by one than its value in the old (pre-transition) state.

The observable variables are the variables we care about. When comparing
two systems, we will require that the observable variables in the two systems
match. We require that all variables whose values are printed by the program
be identified as an observable variables. If desired, we can also include among
the observables the history of external procedure calls for a selected set of
procedures.

A computation of a TS is a maximal finite or infinite sequence of states
σ : s0, s1, . . . , starting with a state that satisfies the initial condition such that
every two consecutive states are related by the transition relation.

A transition system T is called deterministic if the observable part of the
initial condition uniquely determines the rest of the computation. We restrict
our attention to deterministic transition systems and the programs which gen-
erate such systems. Thus, to simplify the presentation, we do not consider here
programs whose behavior may depend on additional inputs which the program
reads throughout the computation. It is straightforward to extend the theory
and methods to such intermediate input-driven programs.

Let P
S

= 〈V
S
,O

S
, Θ

S
, ρ

S
〉 and P

T
= 〈V

T
,O

T
, Θ

T
, ρ

T
〉 be two TS’s, to which

we refer as the source and target TS’s, respectively. Such two systems are called
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comparable if there exists a one-to-one correspondence between the observables
of P

S
and those of P

T
. To simplify the notation, we denote by X ∈ O

S
and

x ∈ O
T

the corresponding observables in the two systems. A source state s
is defined to be compatible with the target state t, if s and t agree on their
observable parts. That is, s[X] = t[x] for every x ∈ O

T
. We say that P

T
is

a correct translation (refinement) of P
S

if they are comparable and, for every
σ

T
: t0, t1, . . . a computation of P

T
and every σ

S
: s0, s1, . . . a computation of

P
S

such that s0 is compatible with t0, then σ
T

is terminating (finite) iff σ
S

is
and, in the case of termination, their final states are compatible.

2.2 Translation Validation of Structure Preserving Transformations

Let P
S

= 〈V
S
,O

S
, Θ

S
, ρ

S
〉 and P

T
= 〈V

T
,O

T
, Θ

T
, ρ

T
〉 be comparable TSs,

where P
S

is the source and P
T

is the target. In order to establish that P
T

is a
correct translation of P

S
for the cases that the structure ofP

T
does not radi-

cally differ from the structure of P
S
, we introduce a proof rule, Validate, which

is inspired by the computational induction approach ([Flo67]), originally in-
troduced for proving properties of a single program, Rule Validate provides a
proof methodology by which one can prove that one program refines another.
This is achieved by establishing a control mapping from target to source loca-
tions, a data abstraction mapping from source to target variables, and proving
that these abstractions are maintained along basic execution paths of the tar-
get program.

The proof rule is presented in Fig. 1. There, each TS is assumed to have a
cut-point set CP. This is a set of blocks that includes the initial and terminal
block, as well as at least one block from each of the cycles in the programs’
control flow graph. A simple path is a path connecting two cut-points, and
containing no other cut-point as an intermediate node. We assume that there
is at most one simple path between every two cut-points. For each simple path
leading from Bi to Bj, ρij describes the transition relation between blocks Bi
and Bj. Typically, such a transition relation contains the condition which
enables this path to be traversed, and the data transformation effected by the
path. Note that, when the path from Bi to Bj passes through blocks that are
not in the cut-point set, ρij is a compressed transition relation that can be
computed by the composition of the intermediate transition relation on the
path from Bi to Bj.

The invariants ϕi in part (2) are program annotations that are expected
to hold whenever execution visits block Bi. They often can be derived from
the data flow analysis carried out by an optimizing compiler. Intuitively, their
role is to carry information in between basic blocks.

The verification conditions assert that at each (target) transition from Bi

to Bj 5 , if the assertion ϕi and the data abstraction hold before the transition,
and the transition takes place, then after the transition there exist new source

5 Recall that we assume that a path described by the transition is simple.
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(i) Establish a control abstraction κ : CPT → CPS that maps initial and
terminal blocks of the target into the initial and terminal blocks of
the source.

(ii) For each basic block Bi in CPT , form an invariant ϕi that may refer
only to concrete (target) variables.

(iii) Establish a data abstraction

α : (p1 → V1 = e1) ∧ · · · ∧ (pn → Vn = en)

assigning to some non-control source state variables Vi ∈ VS an
expression ei over the target state variables, conditional on the (tar-
get) boolean expression pi. Note that α may contain more than one
clause for the same variable. It is required that for every observable
source variable V ∈ OS (whose target counterpart is v) and every
terminal target block B, α implies that V = v at B.

(iv) For each pair of basic blocks Bi and Bj such that there is a simple
path from Bi to Bj in the control graph of PT , let Paths(κ(i), κ(j))
be the set of simple source paths connecting block Bκ(i) to Bκ(j).
We form the verification condition

Cij : ϕi ∧ α ∧ ρ
T

ij → ∃VS

′ : (
∨

π∈Paths(κ(i),κ(j))

ρ
S

π) ∧ α′ ∧ ϕ′j ,

where ρ
S

π is the transition relation for the simple source path π.

(v) Establish the validity of all the generated verification conditions.

Fig. 1. The Proof Rule Validate

variables that reflect the corresponding transition in the source, and the data
abstraction and the assertion ϕj hold in the new state. Hence, ϕi is used as a
hypothesis at the antecedent of the implication Cij. In return, the validator
also has to establish that ϕj holds after the transition. Thus, as part of the
verification effort, we confirm that the proposed assertions are indeed inductive
and hold whenever the corresponding block is visited.

[ZPFG02] contains a discussion, soundness proof, and examples of appli-
cations of the of the rule.

Following the generation of the verification conditions whose validity im-
plies that the target T is a correct translation of the source program S, it
only remains to check that these implications are indeed valid. The approach
promoted here will make sense only if this validation (as well as the preceding
steps of the conditions’ generation) can be done in a fully automatic manner
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with no user intervention.

Parts of the validation task can be performed using CVT tool developed for
the Sacres project [PRSS99] (see [PZP00] for an overview.) For other parts,
we need some arithmetical capabilities for which we used the STeP system
([MAB+94].) We are currently exploring other packages that can provide
similar capabilities.

2.3 Example of voc-64

The intermediate language of SGI Pro-64 (or SGI for short) is WHIRL. After
each round of optimization, the compiler outputs ASCII formatted WHIRL
code, which can be read by a parser and translated back into a graphic repre-
sentation. A description of the tool is in [ZPFG02].

In Fig. 2 we present a program and several of the optimizations applied to
it.

B0
n <- 500
y <- 0
w <- 1

B1
WHILE (n >= w)

B2
w <- w + y * 2 + 3
w <- y + 1

B3
RETURN

(a) Input Program

B0
n <- 500
y <- 0
w <- 1
IF !(n >= w) GOTO L2

B1
L1: w <- w + y * 2 + 3

y <- y + 1
IF (n >= w) GOTO L1

B2
L2: RETURN

(b) After Loop Inversion

B0
n <- 500
y <- 0
w <- 1

B1
L3: w <- w + y * 2 + 3

y <- y + 1
IF (n >= w) GOTO L3

B2
RETURN

(c) After Constant Folding

B0
y <- 0
w <- 1

B1
L3: w <- w + y * 2 + 3

y <- y + 1
IF (w <= 500) GOTO L3

B2
RETURN

(d) After Copy Propagation and
Dead Code Elimination

B0
y <- 0
w <- 1
.t1 <- 0

B1
L3: w <- .t1 + w + 3

y <- y + 1
.t1 <- .t1 + 2
IF (w <= 500) GOTO L3

B2
RETURN

(e) After Strength Reduction

Fig. 2. Stages of Optimization

In Appendix A we present the verification conditions that voc-64 produced
for each stage of the optimization. There, we used annotation of (a)–(e) to
denote the state of the optimizations the variables/conditions refer to. So, for
example, Ccd

01 refers to the verification condition of the target of program (d)
above going from B0 to B1 relative to the source program (c), and ye denotes
the y variable of program (e). The variable π is the control variable denoting
the program counter of the program. The data mapping and assertion are
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given by:

αab : (πb ∈ {1, 2} → (na = nb) ∧ (wa = wb) ∧ (ya = yb))

αbc : (πc ∈ {1, 2} → (nb = nc) ∧ (wb = wc) ∧ (yb = yc))

αcd : (πd ∈ {1, 2} → (nc = 500) ∧ (wc = wd) ∧ (yc = yd))

αde : (πd ∈ {1, 2} → (wd = we) ∧ (yd = ye))

ϕ3 : (.t1 = 2 · ye)

3 Validating Loop Reordering Transformations

A reordering transformation is any program transformation that merely changes
the order of execution of the code, without adding or deleting any executions
of any statement [AK02]. It preserves a dependence if it preserves the relative
execution order of the source and target of that dependence, and thus pre-
serves the meaning of the program. Reordering transformations cover many
of the loop transformations, including fusion, distribution, interchange, tiling,
unrolling, and reordering of statements within a loop body.

In this section we review the reordering loop transformation and propose
“permutation rules” that the validator may use to deal with these transfor-
mations.

3.1 Overview of Reordering Loop Transformations

Consider a loop of the form described in Fig. 3. We denote by I = {i1, . . . , iN}
the set of values of i = (i1, . . . , ik). We use <

S
to denote lexicographical

ordering between I entries, and assume that i1 <
S

. . . <
S

iN .

for i1 = 1 to k1 do

...

for im = 1 to km do

B1(i1,...,im)

...

B`(i1,...,im)

end

...

end

Fig. 3. A General Loop

An execution of the loop in Fig. 3 can be described by:

B1(i1), B2(i1), . . . , B`(i1)︸ ︷︷ ︸
B(i1)

, . . . , B1(iN ), B2(iN ) . . . , B`(iN )︸ ︷︷ ︸
B(iN )

(1)

A reordering transformation is a transformation that causes the execution of
the loop to be a permutation of the sequence in (1).
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Reordering transformations can be partitioned into two classes: The first
reorders the executions of the B(i)’s, but leaves each B(i) intact. Examples of
such transformations are loop reversal, interchange, tiling, and unrolling.

The second class of reordering transformations permute the execution order
of the components Bj(i) inside each B(i), and leaves the order of the i’s intact.
Transformations belonging to this class are loop fusion and distribution.

There are also hybrid transformations. For example, software pipelining
interleaves the executions of the sub-bodies of B(i), and, when projected to
each i, the Bj(i)’s appear in order.

In this paper, we focus on the first class of reordering optimizations. Some
common examples of transformations of the first type are presented in Fig. 4.
The second column describes the source loop, the third column describes the
target loop. We explain the fourth column shortly. Note that for unrolling
and tiling we assume that c divides n. For tiling we also assume that d divides
m.

Tranf-

mation
Source (Bi) Target (Bj) P (i)

reversal for i = 1, n do
B(i)

for j = n, 1 do
B(j)

(n + 1− i)

inter-

change

for i1 = 1, n do
for i2 = 1, m do
B(i1, i2)

for j1 = 1, m do
for j2 = 1, n do
B(j2, j1)

(i2, i1)

unrolling for i = 1, n do
B(i)

for j1 = 1, n by c do
for j2 = j1, j1 + c− 1 do
B(j2)

(b i−1
c c+ 1, i)

tiling
for i1 = 1, n do
for i2 = 1, m do
B(i1, i2)

for j1 = 1, n by c
for j2 = 1, m by d
for j3 = j1, j1 + c− 1
for j4 = j2, j2 + d− 1
B(j3, j4)

( cb i1−1
c c+ 1,

db i2−1
d c+ 1,

i1, i2)

Fig. 4. Some Loop Transformation

For the loop transformations being considered here, let I denote the vector
space of the target loop. Assume that I = {j1, . . . , jN} and that <

T
is the

order between I’s elements, with j1 <
T

. . . <
T

jN . Each transformation in
the class can be associated with a characteristic permutation P on [1..N ], that
indicates the order in which the source control elements are executed in the
target. That is, if P (`1) = `2, then B(i‘1) is executed when the target control
is j‘2 . It follows that the characteristic permutation P induces a mapping
from I to I. We abuse notation and denote this mapping also by P . Thus,
if P (`1) = `2, then we also write P (i‘1) = j‘2 . The fourth column in Fig. 4
shows the permutation P for each of the examples.
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Consider a transformation of the first type. Let I denote the vector space
of the target loop. Assume that I = {j1, . . . , jN} and that <

T
is the order

between I’s elements, with j1 <
T

. . . <
T

jN . Each transformation in the
class can by associated with a characteristic permutation P on [1..N ], that
indicates the order in which the source control elements are executed in the
target. I.e., if P (`1) = `2, then B(i‘1) is executed when the target control
is j‘2 . It follows that the characteristic permutation P induces a mapping
from I to I. We abuse notation and denote this mapping also by P . Thus,
if P (`1) = `2, then we also write P (i‘1) = j‘2 . The fourth column in Fig. 4
shows the permutation P for each of the examples.

Before venturing into the permutation rules, we need to define the structure
of the loop body more carefully: Each B consists of a group of statements, some
may include (definition/use)-references to array variables. Suppose the array
referenced is X (the extension to several arrays is trivial and omitted here).
For each B, for each statement that defines (i.e. writes to) some element
in X, let D be a function that maps i (in the source loop) to the array
index defined in D. E.g., suppose B`(i1, i2) consists of the statement “X[i1] =
X[i1 − 1] + X[i1]”. Then, D`(i1, i2) = i1. Similarly, for each statement that
uses some element in X, let U be the function that maps i to the array index
used in U . In the previous example, we have two uses, for the first we have
U1

` (i1, i2) = i2 − 1 and U2
` (i1, i2) = i1.

3.2 Permutation Rules

The simulation-based proof method discussed in previous sections assumes
that the source and target have similar structures, thus rule Validate can-
not be used to validate many of the loop optimizations. In this section
we propose “permutation rules” for validating reordering transformations.
The soundness of the permutation rules is established separately. Usually,
structure-modifying optimizations are applied to small localized sections of the
source program, while the rest of the program is only optimized by structure-
preserving transformations. Therefore, the general validation of a translation
will combine these two techniques.

For the sake of this discussion, we only consider flow dependences in our
permutation rule. The other types of dependence, anti- and output depen-
dence, can be handled in exactly the same manner. Considering only flow
dependences, a reordering transformation is valid if the order of uses of a
variable or array element, relative to its definitions,is unchanged. That is, for
every `, if in the original loop X[`] is defined before it is used, then so it is
in the transformed loop. In other words, if for some occurrences of D and U
and `1, `2 ∈ [1..N ] such that `1 < `2, D(i‘1) = U(i‘2), then in the transformed
loop B(i‘1) appears beforeB(i‘2), or, equivalently, P (i‘1) <

T
P (i‘2).

Consequently, our first permutation rule claims that if `1 < `2 and D(i‘1) =
U(i‘2), then P (`1) < P (`2). The rule is described in Fig. 5.
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If for all `1, `2 ≤ N ,

`1 < `2 ∧ D(i‘1) = U(i‘2) =⇒ P (`1) < P (`2)

then the transformation preserves the meaning of the program

Fig. 5. Permutation Rule for Type-1 Transformations

For example, for loop reversal, since P (i) = n + 1− i (see Fig. 4), the rule
claims that the transformation is valid if whenever `1 < `2 and D(`1) = U(`2),
`2 < `1 should hold, thus the transformation is not valid if there exists `1 and
`2, 1 ≤ `1 6= `2 ≤ n such that D(`1) = U(`2).

3.3 Automatic Validation

Validating transformations based on proof rule as in Fig. 5 involves:

(i) Proving the soundness of the permutation rules. This can be accom-
plished by theorem provers such as PVS [SOR93].

(ii) Proving that the transformations are of the right form, and that P is a
permutation (when involved). We ignore such issues, and assume that
they compiler handles a fixed known set of transformations, all are easily
verified to be of the correct form and using a proper permutation.

(iii) Solving the linear equations to find when the Ds and the Us intersect.
Again, we assume that the equations involved are rather simple and can
be handled. We also trust to have the solutions supplied by the compiler
and to check them for soundness.

In [ZPL00] we proposed permutation rules that deal with general uni-
modular transformations. While the permutation rules there deal with a much
wider set of transformations, including non-reordering transformations and
transformations that may alter the loop body, validating the transformations
requires much more powerful tools than the transformations here. We believe
that, at the price of dealing with a more restricted set of transformations, we
obtain a more efficient methodology that can deal with the most commonly
used loop transformations. In the next section we use the permutation rules
developed here to obtain run-time validation of the reordering transformations.

4 Run-time Validation of Speculative Optimizations

This section gives an overview of run-time validation of speculative loop op-
timizations. That is, using run-time tests to ensure the correctness of loop
optimizations when neither the compiler nor a validation tool are able to.
This technique is particularly useful when memory aliasing, due to the use of
pointers or arrays, inhibits the static dependence analysis that loop optimiza-
tions rely on.
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Unlike compiler validation, as discussed in previous sections, run-time val-
idation has not only the task of determining when an optimization has gener-
ated incorrect code, but also has the task of recovering from the optimization
without aborting the program or producing an incorrect result. It will be pos-
sible in some instances to simply adjust the behavior of the optimized code
based on run-time tests, so that correctness is preserved while also maintain-
ing much of the performance benefit of the optimization. In other instances,
it will be necessary to jump to an unoptimized version of the code.

The particular optimizations to be addressed here are the ones discussed
in Section 3. As shown in [GHCP02], software pipelining has also been shown
to be particularly amenable to run-time validation.

The work presented here is somewhat preliminary. Thus, we proceed pri-
marily by example, without presenting an entire formalism for validation of
speculative optimizations.

4.1 Formal Basis

Suppose we have a loop reordering that performs the transformation

for I = 1 to N do

A[D(I)] = ...

... = ... A[U(I)] ...

end

=⇒
for I = P−1(1) . . . P−1(N) do

A[D(I)] = ...

... = ... A[U(I)] ...

endwhere P is a permutation determining the sequence of values taken on by
the index variable I in the transformed loop. That is, P (i) = j iff the index
variable takes on the value i in the jth iteration of the transformed loop.
Thus, P−1(j) gives the value of the index variable in the jth iteration of the
transformed loop.

For run-time validation of this transformation we will use, as an invariant to
be maintained at run-time, a simplification of the permutation rule presented
in Fig. 5. This simple rule is:

∀i, j ≤ N, (i < j) ∧ D(i) = U(j) =⇒ P (i) < P (j) (2)

Intuitively, this says that if A[D(i)] and A[U(j)] refer to the same location,
such that the write to that location would have occurred before the read from
that location in the original loop, the write must also occur before the read in
the transformed loop.

This rule accounts for perfectly nested loops as well, of the form,

for i1 = 1 to N1 do

...

for im = 1 to Nm do

A[D(i1, . . . , im)] = ...

... = ... A[U(i1, . . . , im)] ...

end

192



Zuck et al

...

end
where D and U each return a vector giving the indices into multi-dimensional
array A.

Rule (2), above, actually governs only the preservation of flow dependence
(aka true dependence). The complete rule, accounting for anti- and output
dependence as well is:

∀i, j ≤ N : (i < j) ∧ (D(i) = U(j) ∨ U(i) = D(j) ∨ D(i) = D(j))

=⇒ P (i) < P (j)

For simplicity of the presentation, and without loss of generality, we’ll only
consider the simpler rule here.

4.2 Safety Properties of Run-Time Validation

The safety properties that must be preserved by the run-time test are:

(i) The test must be able to determine, either precisely or conservatively, if
a dependence may be violated by the optimized loop.

(ii) Once a run-time test determines that a dependence may be violated by
the optimized loop, there must be an execution path that can be taken
to produce the correct result.

(iii) The run-time test must be able to determine that a dependence may be
violated before the dependence has actually been violated.

This last property, which we refer to as the testability property, is, perhaps,
overly strict. One can imagine detecting a dependence violation after the
violation has occurred, and executing patch-up code to undo the effect of the
violation. We do not take this approach, however.

4.3 Efficiency Issues for Run-Time Validation

In order to be worthwhile, run-time validation should satisfy the following
qualitative properties:

(i) The run-time test should occur as infrequently as possible.

(ii) The test should be as inexpensive as possible, in terms of time and space.

(iii) The cost of executing the loop when a potential dependence violation is
detected should be no greater than the cost of the orginal (unoptimized)
loop.

We’ve developed a set of run-time validation techniques which satisfy these
properties to various extents. In this paper, though, we concentrate on de-
scribing how run-time tests are used to preserve dependences, rather than
addressing their efficiency.
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4.4 The Testability Property

The testability property, which states that a potential dependence violation
must be detected before the violation actually occurs, is what makes run-
time validation particularly difficult in many cases. Without this constraint,
there is a reasonably efficient algorithm for testing to see if a transformed loop
satisfies rule (2), above. This algorithm is:

Input: Permutation P , functions D, U with ranges {1..m}
Output: “success” or “failure”
Data structure: MARK: array[1..m] of integer, with all elements ini-
tialized to zero.
Algorithm:

for k := P−1(1), ..., P−1(N) do

MARK[U(k)] := max(Mark[U(k)],k)
if MARK[D(k)] > k then exit with " failure"

end

exit with " success"

To see why this algorithm will detect if rule (2) is violated, note that the
only way the rule can be violated is when there exists i, j such that (i <
j) ∧ (D(i) = U(j)) ∧ (P (j) < P (i)). This is exactly the situation detected
by the algorithm, because:

(i) If k takes on a value i such that MARK[D(i)] contains a non-zero value j,
then it must be the case that D(i) = U(j) because they produce the same
index into the MARK array. Further, since j was written into MARK[U(j)]
before being read as MARK[D(i)] by the algorithm, k must have taken on
the value j before it took on the value i. Therefore, P (j) < P (i).

(ii) If j > i, the rule is violated and the algorithm exits with failure.

The use of max in the algorithm is necessary if U(k) could produce the same
value for several different values of k. This algorithm has several desirable
properties, namely

(i) The loop index variable k iterates over the sequence P−1(1) . . . P−1(N),
just as it does in the transformed loop, above.

(ii) The computation of D(k) and U(k) is the same computation performed
by the transformed loop.

Together, these properties mean that a run-time algorithm satisifying them
can be integrated into the transformed loop code without a) changing the
order of the transformed loop or adding an additional loop and b) having to
compute D(i) or U(i) for the sole purpose of the run-time test. In particular,
the transformed loop with the run-time test might look like:

for i = P−1(1) . . . P−1(N) do
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w = D(i)
r = U(i)
MARK[r] = max(MARK[r],i)

if MARK[w] > i then goto patchup_code

A[w] = ...

... = ... A[r] ...

end
However, the algorithm has two undesirable properties, namely:

(i) It requires an array MARK of a size equal to the size of A, as well as 2N
accesses to MARK.

(ii) Worst of all, in the cases where the rule is violated, the algorithm doesn’t
detect the violation until the write is about to happen – which isn’t until
after the read has already occurred on a previous iteration.

This last characteristic renders the algorithm useless as a tool for run-time
validation, because it does not exhibit the testability property. Intuitively,
the problem is that the incorrect value read in a previous iteration may have
been used in subsequent iterations, thus rendering the program incorrect.

Does there exist an algorithm that has the desirable properties we want
without the undesirable properties listed above? If, as in the code above, we
require that the run-time test be integrated into the optimized loop and that
each D(j) be computed only during the iteration in which the loop index has
the value j, then the answer is “no”. To see this, it is sufficient to note that to
satisfy the testability property, we would have to be able, in each ith iteration,
to answer the question

“Is there a value j ∈ {P−1(i + 1), . . . , P−1(N)} such that j < P−1(i) and
D(j) = U(P−1(i))?”

without computing D(j). For an arbitrary function D, this is not possible.

4.5 Restricting D

So far, we’ve placed no restrictions on the functions D and U . That is, we
allow D and U to be sufficiently complex as to prevent static analysis. However
in most loops it is not the case that both D and U cannot be analyzed. For
example, the transformation of a loop of the form

for i = 1 to N do

A[i] = ...

... = ... A[U(i)] ...

end

=⇒
for i = P1 to PN do

A[i] = ...

... = ... A[U(i)] ...

end
where U(i) is arbitrarily complex, is not a candidate for static analysis but
does satisfy the testability property 6 . A version of the transformed code with

6 Note that, in this case, the testability property only holds if restrict we our concern to
flow dependence and ignore anti-dependence. A constraint that would allow us to ignore
anti-dependence, for example, is U(i) < i.
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the appropriate run-time test might be:

for i = P−1(1) to P−1(N) do
r = U(i)
if test(i,r) goto escape_code
A[i] = ...

... = ... A[r] ...
endwhere

test(i, r) = r < i ∧ P (r) > P (i)

Although this test function appears prohibitively expensive, in practice it is
not. The compiler, having created the permutation P , can generate efficient
code for the test that is specific for P . For example, if the transformation is
loop reversal then the test function is simply test(i, r) = (r < i)

If the transformation is loop interchange for two nested loops, then the
test function is

test((i1, i2),(r1, r2))= (r1, r2) ≺lex (i1, i2) ∧ (i2, i1) ≺lex (r2, r1)
= r1 < i1 ∧ r2 > i2

4.6 Examples

Dynamic Loop Interchange

In this section, we show how the run-time test for a particular loop interchange
example can be automatically derived from the formulation of the general
interchange test given above. Suppose the tranformation is:
for i = 1 to N
for j = 1 to M
k = 10 - j
A[i, j] = A[i-1, j-k] + C

end
end

=⇒

for j = 1 to M
k = 10 - j
for i = 1 to N

A[i, j] = A[i-1, j-k] + C
end

end

The benefits to this loop interchange are 1) the computation of k was able
to be moved out of the inner loop and 2) in a language with column-major
arrays (such as Fortran), the transformed loop has better locality. Using the
formulation of the general validation test in the for loop interchange, a test is
inserted as follows:

for j = 1 to M
k = 10 - j
for i = 1 to N

if test((i, j),(i-1,j-k)) goto escape_code
A[i, j] = A[i-1, j-k] + C

end
end

where, it is east to see that test((i, j), (i−1, j−k >) = (i−1 < i) ∧ (j−k >
j) = (k < 0). Thus, after inserting the actual test and moving it to the outer
loop (since the test is invariant in the inner loop), we arrive at:
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for j = 1 to M
k = 10 - j
if (k < 0) goto escape_code
for i = 1 to N

A[i, j] = A[i-1, j-k] + C
end

end

If the dependence is about to be violated because k < 0, then the loop to
jump to is the orginal loop to execute the remainder of the iterations. The
iterations of the original loop that are left to be executed can be executed by:

escape_code:

for ii = 1 to N

for jj = j to M

k = 10 - jj

A[ii, jj] = A[ii-1, jj-k] + C

end

end

where j is the same variable as in the transformed loop, above, containing
the last value that j took on within the optimized loop. This escape code is
not difficult to derive from the formal specification of the problem, but space
constraints force us to leave it to the reader.

Dynamic Tiling

In the previous example, we were able to generate a version of the original
loop that could be executed once the test in the transformed loop detected an
impending dependence violation. For a more complicated loop optimization,
such as tiling, it may be easier to simply adjust the transformed loop based on
a run-time test prior to entering the transformed loop. For example, consider
the loop tiling transformation in Fig. 6.

for i = 1 to N
for j = 1 to N
A[i, j] = A[i-1, j-k] + C

end
end

=⇒

for ii = 1 to N step B
for jj = 1 to N step B
for i = ii to ii+B-1
for j = jj to jj+B-1
A[i, j] = A[i-1, j-k] + C

end
end

end
end

Fig. 6. Tiling Transformation

where k is a variable whose value is unknown at compile-time. Without a
run-time test, this transformation is not necessarily correct. However, it is
correct under the condition that k ≥ B. Thus, if a fixed tile size B is required,
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the compiler can generate code to test the value of k prior to entering the
tiled loop and to jump to the original loop if k < B. Another alternative is to
simply add the assignment B = min(k,maxTileSize) before the tiled loop.

4.7 Architectural Considerations

Adding run-time tests to validate compiler optimizations is becoming increas-
ingly tractable due to, among other things, the emergence of new classes of
processors that exhibit 1) the ability to exploit instruction-level parallelism
(ILP) and 2) hardware features that reduce the cost of run-time tests and the
compensation code when a dependence is about to be violated.

Most modern processors have multiple functional units for exploiting in-
struction level parallelism, either via dynamic scheduling of multiple instruc-
tions simultaneously on superscalar machines or via compiler-specified multi-
operation instructions on VLIW/EPIC processors. In fact, the challenge with
these machines has been to find sufficient ILP in programs in order to fully
utilize all functional units each cycle. Thus, the additional tests required for
run-time validation can often be scheduled in unused slots in the instruction
schedule.

Some hardware features that aid in the testing for, and compensating for,
dependence violations can be found on the VLIW/EPIC class of machines
exemplified by the Intel IA-64 architecture. The dynamic disambiguation fea-
ture, which provides several instructions that test for aliasing, can be used to
implement low-cost run-time validation tests. Once a run-time test has deter-
mined that a dependence violation is about to occur, the predication feature
of the IA-64 can be used to disable instructions in such as way as to preserve
the correctness of the code. For more detail on this last point, as applied to
run-time validation of software pipelining, see [GHCP02].

5 Conclusion

We reviewed the translation validation approach, its advantages, the main
proof rule used for structure preserving transformations, and described a tool,
voc-64, that generates verification conditions for SGI Pro-64.

We then turn to optimizations that cause major changes in the structure
of the code. For reordering transformations we propose special permutation
loops that can easily deal with the most common optimizations. For transfor-
mations whose validity is hard, or even impossible, to check at compile-time,
we propose a run-time translation validation that allows for aggressive op-
timization that while continuously guaranteeing that no dangerous aliasing
occurs. When a problem is detected, the code escapes to an unoptimized ver-
sion of the original loop, where it completes the computation at a slower but
guaranteed correct manner.
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A Control Mapping Generated by voc-64

The control mapping generated by voc-64 for the example in Section 2.3 is:

Cab
01 : (πb = 0 ∧ π′b = 1 ∧ n′b = 500 ∧ w′b = 1 ∧ y′b = 0 ∧ 500 ≥ 1 ∧ αab) →

(πa = 0 ∧ π′a = 2 ∧ n′a = 500 ∧ w′a = 1 ∧ y′a = 0 ∧ 500 ≥ 1 ∧ α′ab)
Cab

02 : (πb = 0 ∧ π′b = 2 ∧ n′b = 500 ∧ w′b = 1 ∧ y′b = 0 ∧ ¬(500 ≥ 1) ∧ αab) →
(πa = 0 ∧ π′a = 3 ∧ n′a = 500 ∧ w′a = 1 ∧ y′a = 0 ∧ ¬(500 ≥ 1) ∧ α′ab)

Cab
11 : (πb = 1 ∧ π′b = 1 ∧ w′b = wb + 2 · yb + 3 ∧ y′b = yb + 1 ∧ (nb ≥ wb + 2 · yb + 3)

∧αab) → (πa = 2 ∧ π′a = 2 ∧ w′a = wa + 2 · ya + 3 ∧ y′a = ya + 1
∧(na ≥ wa + 2 · ya + 3) ∧ α′ab)

Cab
12 : (πb = 1 ∧ π′b = 2 ∧ w′b = wb + 2 · yb + 3 ∧ y′b = yb + 1 ∧ ¬(nb ≥ wb + 2 · yb + 3)

∧αab) → (πa = 2 ∧ π′a = 3 ∧ w′a = wa + 2 · ya + 3 ∧ y′a = ya + 1
∧¬(na ≥ wa + 2 · ya + 3) ∧ α′ab)

Cbc
01 : (πc = 0 ∧ π′c = 1 ∧ n′c = 500 ∧ w′c = 1 ∧ y′c = 0 ∧ αbc) →

(πb = 0 ∧ π′b = 1 ∧ n′b = 500 ∧ w′b = 1 ∧ y′b = 0 ∧ 500 ≥ 1 ∧ α′bc)
Cbc

11 : (πc = 1 ∧ π′c = 1 ∧ w′c = wc + 2 · yc + 3 ∧ y′c = yc + 1 ∧ (nc ≥ wc + 2 · yc + 3)
∧αbc) → (πb = 1 ∧ π′b = 1 ∧ w′b = wb + 2 · yb + 3 ∧ y′b = yb + 1
∧(nb ≥ wb + 2 · yb + 3) ∧ α′bc)

Cbc
12 : (πc = 1 ∧ π′c = 2 ∧ w′c = wc + 2 · yc + 3 ∧ y′c = yc + 1 ∧ ¬(nb ≥ wc + 2 · yc + 3)

∧αbc) → (πb = 1 ∧ π′b = 2 ∧ w′b = wb + 2 · yb + 3 ∧ y′b = yb + 1∧
¬(nb ≥ wb + 2 · yb + 3) ∧ α′bc)

Ccd
01 : (πd = 0 ∧ π′d = 1 ∧ w′d = 1 ∧ y′d = 0 ∧ αcd) →

(πc = 0 ∧ π′c = 1 ∧ n′c = 500 ∧ w′c = 1 ∧ y′c = 0 ∧ α′cd)
Ccd

11 : (πd = 1 ∧ π′d = 1 ∧ w′d = wd + 2 · yd + 3 ∧ y′d = yd + 1 ∧ (500 ≥ wd + 2 · yd + 3)
∧αcd) → (πc = 1 ∧ π′c = 1 ∧ w′c = wc + 2 · yc + 3 ∧ y′c = yc + 1
∧(nc ≥ wc + 2 · yc + 3) ∧ α′cd)

Ccd
12 : (πd = 1 ∧ π′d = 2 ∧ w′d = wd + 2 · yd + 3 ∧ y′d = yd + 1 ∧ ¬(500 ≥ wd + 2 · yd + 3)

∧αcd) → (πc = 1 ∧ π′c = 2 ∧ w′c = wc + 2 · yc + 3 ∧ y′c = yc + 1∧
¬(nc ≥ wc + 2 · yc + 3) ∧ α′cd)

Cde
01 : (πe = 0 ∧ π′e = 1 ∧ .t1′ = 0 ∧ w′e = 1 ∧ y′e = 0 ∧ αde) →

(πd = 0 ∧ π′d = 1 ∧ w′d = 1 ∧ y′d = 0 ∧ α′de ∧ ϕ′)
Cde

11 : (πe = 1 ∧ π′e = 1 ∧ .t1′ = .t1 + 2 ∧ w′e = .t1 + we + 3 ∧ y′e = ye + 1∧
(500 ≥ .t1 + w + 3) ∧ αde ∧ ϕ)(πd = 1 ∧ π′d = 1 ∧ w′d = wd + 2 · yd + 3 →
∧y′d = yd + 1 ∧ (500 ≥ wd + 2 · yd + 3) ∧ α′de ∧ ϕ′)

Cde
12 : (πe = 1 ∧ π′e = 2 ∧ .t1′ = .t1 + 2 ∧ w′e = .t1 + we + 3 ∧ y′e = ye + 1∧

¬(500 ≥ .t1 + w + 3) ∧ αde ∧ ϕ) → (πd = 1 ∧ π′d = 2 ∧ w′d = wd + 2 · yd + 3∧
y′d = yd + 1 ∧ ¬(500 ≥ wd + 2 · yd + 3) ∧ α′de)
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